Abstract
Nafion is a perfluorinated sulfonic acid resin (PFSA), which was developed by the E. I. DuPont Company. Owing to its stability, superior mechanical properties, high chemical inertness, and proton conductivity, Nafion is currently used in commercial membranes and catalyst layers of fuel cells. This article overviews the structure, morphology, and mechanical and electrochemical properties of Nafion. In addition, important research as well as practical industrial applications, such as brine electrolysis, chlor-alkali cells, salt splitting, clean power generation by Nafion polymer electrolyte fuel cells, batteries, gas separation, gas sensors, and electrodialysis, is also presented.
Bibliography
- 1K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535–4586 (2004).
- 2S. Banerjee and D. E. Curtin, J. Fluor. Chem. 125, 1211–1216 (2004).
- 3V. D. Noto, T. A. Zawodzinski, A. M. Herring , G. A. Giffin, E. Negro, and S. Lavina, Int. J. Hydrogen Energy 37, 6120–6131 (2012).
- 4Available at http://www2.dupont.com/FuelCells/en_US/assets/downloads/dfc101.pdf, Accessed October 2, 2014.
- 5Available at http://fuelcellstore.com/spec-sheets/nafion-211-212-spec-sheet.pdf, Accessed October 2, 2014.
- 6Available at http://www2.dupont.com/FuelCells/en_US/products/nafion_xl_membrane.html, Accessed October 2, 2014.
- 7M. A. Hickner and B. S. Pivovar, Fuel Cells 5, 213–229 (2004).
- 8S. Yakovlev and K. H. Downing, PCCP 15, 1052–1064.
- 9A. Lehmani, S. Durand-Vidal, and P. Turq, J. Appl. Polym. Sci. 68, 503–508 (1998).
- 10S. J. Paddison and T. A. Zawodzinski Jr, Solid State Ionics 113, 333–340 (1998).
- 11H. G. Haubold, T. Vad, and H. Jungbluth, Electrochim. Acta 46, 1559–1563 (2001).
- 12T. Okada, G. Xie, and O. Gorseth, Electrochim. Acta 43, 3741–3747 (1998).
- 13M. Ludvigsson, J. Lindgren, and J. Tegenfeldt, Electrochim. Acta 45, 2267–2271 (2000).
- 14J. Y. Li and S. Nemat-Nasser, Mech. Mater. 32, 303–314 (2000).
- 15E. Nergo, M. Vittadello, K. Vezzu, S. J. Paddison, and V. D. Noto, Solid State Ionics 252, 84–92 (2013)
- 16S. Kundu, L. C. Simon, and M. Fowler, Polymer 46, 11707–11715 (2005).
- 17H. Tang, S. Peikang, S. P. Jiang, F. Wang, and M. Pan, J. Power Sources 170, 85–92 (2007).
- 18T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama, T. Abe, and Z. Ogumi, J. Power Sources 158, 1222 (2006).
- 19Y. Kawano, Y. Wang, and R. A. Palmer, Polímeros 12, 96–101 (2002).
- 20B. D. Cahan and J. S. Wainright, J. Electrochem. Soc. 140, L185–L186 (1993).
- 21J. Peron, A. Mani, and X. Zhao, J. Membr. Sci. 356, 44–51 (2010).
- 22H. Sun, Z. Sun, and Y. Wu, Int. J. Hydrogen Energy 37, 12821–12826 (2012).
- 23A. V. Anantaraman and C. L. Gardner, J. Electroanal. Chem. 414, 115–120 (1996).
- 24M. Casciola, G. Alberti, and M. Sganappa, J. Power Sources 162, 141–145 (2006).
- 25E. Passalacqua, F. Lufrano, and G. Squadrito, Electrochim. Acta 46, 799–805 (2001).
- 26M. Uchida, Y. Aoyama, and N. Eda, J. Electrochem. Soc. 142, 4143–4149 (1995).
- 27E. Antolini, L. Giorgi, and A. Pozio, J. Power Sources 77, 136–142 (1999).
- 28V. A. Paganin, E. A. Ticianelli, and E. R. Gonzalez, J. Appl. Electrochem. 26, 297–304 (1996).
- 29T. Xie, Nature 464, 267–270 (2010).
- 30H. Tang and M. Pan, J. Phys. Chem. C 112, 11556–11568 (2008).
- 31M. Amjadi, S. Rowshanzamir, S. J. Peighambardoust, M. G. Hosseini, and M. H. Eikani, Int. J. Hydrogen Energy 35, 9252–9260 (2010).
- 32C. Beauger, G. Laine, A. Burr, A. Taguet, B. Otazaghine, and A. Rigacci, J. Membr. Sci. 430, 167–179 (2013).
- 33F. J. Fernandez-Carretero, V. Compan, and E. Riande, J. Power Sources 173, 68–76 (2007).
- 34P. Bebin, M. Caravanier, and H. Galiano, J. Membr. Sci. 278, 35–42 (2006).
- 35V. D. Noto, M. Piga, E. Negro, G. A. Giffin, S. Polizzi, and T. A. Zawodzinski, RSC Adv. 3, 18960–18969 (2013).
- 36V. D. Noto, M. Piga, G. A. Giffin, K. Vezzu, and T. A. Zawodzinski, J. Am. Chem. Soc. 134, 19099–19107 (2012).
- 37V. D. Noto, N. Boaretto, E. Negro, and G. Pace, J. Power Sources 195, 7734–7742 (2010).
- 38V. D. Noto, E. Negro, J. Sanchez, and C. Lojoiu, J. Am. Chem. Soc. 132, 2183–2195 (2010).
- 39R. Chen, Z. Wang, C. Liang, M. Pan, and H. Tang, Sci. Adv. Mater. 5, 1788–1795 (2013).
- 40L. Chen, H. Tang, J. Li, and M. Pan, Int. J. Energy Res. 37, 879–887 (2013).
- 41F. Tailoka, D. J. Fray, and R. V. Kumar, Solid State Ionics 161, 267–277 (2003).
- 42C. A. Martnez-Huitle, N. Suely Fernandes, S. Ferro, S. Ferro, and B. A. De, Diam. Relat. Mater. 19, 1188–1193 (2010).
- 43R. Harth, U. Mor, and D. Ozer, J. Electrochem. Soc. 136, 3863—3867 (1989).
- 44F. Mohammadi and A. Rabiee, J. Appl. Polym. Sci. 120, 3469–3476 (2011).
- 45W. Z. Lang, H. Y. Niu, and Y. X. Liu, J. Appl. Polym. Sci. 129, 3473–3481 (2013).
- 46S. P. Kusumocahyo and M. Sudoh, J. Membr. Sci. 161, 77–83 (1999).
- 47K. S. Sportsman, J. D. Way, and W. J. Chen, J. Membr. Sci. 203, 155–166 (2002).
- 48L. Wang, J. Li, and Y. Lin, J. Membr. Sci. 305, 238–246 (2007).
- 49L. Wang, J. Li, and Y. Lin, Chem. Eng. J. 146, 71–78 (2009).
- 50J. H. Chen, Q. L. Liu, and J. Fang, J. Colloid Interface Sci. 316, 580–588 (2007).
- 51W. Won, X. Feng, and D. Lawless, Sep. Purif. Technol. 31, 129–140 (2003).
- 52Z. Jin, K. Xie, X. Hong, Z. Hu, and X. Liu, J. Power Sources 218, 163–167 (2012).