Abstract
The structure of polymers can be studied by the various techniques of diffraction, including diffraction by X rays, electrons, and neutrons. Of these, X-ray diffraction has been most widely used because of the high accuracy in the measurement of the lattice spacings. In electron diffraction, the lattice spacings cannot be measured with an accuracy of better than about 1%. However, sample size requirements are less stringent and electron microscope imaging can be performed at the same time. Also, electron scattering is stronger than X-ray scattering, and because the specimens are often very thin, the kinematical approximation can be made and therefore intensity calculations are more reliable. Neutron diffraction is usually expensive and is therefore used only for special studies to provide unique data (see also Neutron Scattering).
Bibliography
- 1J. B. Cohen, Diffraction Methods in Materials Science, The Macmillan Co., New York, 1966.
- 2B. E. Warren, X-Ray Diffraction, Addison-Wesley, Menlo Park, Calif, 1969.
- 3(a) P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals, Butterworth Publishers, Ltd., London, 1965;
(b) D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer, New York, 1996;
10.1007/978-1-4757-2519-3 Google Scholar(c) J. C. H. Spence, High-Resolution Electron Microscopy, 4th ed., Oxford University Press, Oxford, UK, 2013.10.1093/acprof:oso/9780199668632.001.0001 Google Scholar
- 4B. K. Vainstein, Modern Crystallography, Springer-Verlag, Berlin, 1981.
- 5J. M. Cowley, Diffraction Physics, North-Holland Publishing Co., New York, 1985.
- 6(a) U. Kolb, E. Mugnaioli, and T. E. Gorelik, Cryst. Res. Technol. 46, 542 (2011); (b) J. M. LeBeau, S. D. Findlay, L. J. Allen, and S. Stemmer, Ultramicroscopy 110, 118 (2010); (c) R. Srinivasan, V. A. Lobastov, C. Y. Ruan, and A. H. Zewail, Helv. Chim. Acta 86, 1763 (2003); (d) A. H. Zewail, Science 328, 187 (2010).
- 7R. W. James, The Optical Principles of the Diffraction of X-Rays, (The Crystalline State, Vol. II), George Bell & Sons, Ltd., London, 1948.
- 8D. L. Dorset, Structural Electron Crystallography, Plenum Press, New York, 1995.
10.1007/978-1-4757-6621-9 Google Scholar
- 9G. E. Bacon, Neutron Diffraction, Clarendon Press, Oxford, UK, 1962.
- 10C. J. Davisson and L. H. Germer, Nature 119, 558 (1927).
- 11G. P. Thomson and A. Reid, Nature 119, 890 (1927).
10.1038/119890a0 Google Scholar
- 12L. de Broglie, Philos. Mag. 47, 446 (1924).
10.1080/14786442408634378 Google Scholar
- 13(a) P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe, and B. T. M. Willis, in International Tables for Crystallography, E. Prince (ed.), Wiley, Hoboken, 2006, Vol. C, Chapt. 6.1, pp. 554–595.
10.1107/97809553602060000600 Google Scholar(b) P. A. Doyle and P. S. Turner, Acta Crystallogr. Sect. A 24, 390 (1968).
- 14G. H. Lu, L. G. Li, and X. N. Yang, Adv. Mat. 19, 3594 (2007).
- 15(a) M. W. Matsen and F. S. Bates, Macromolecules 29, 1091 (1996); (b) C. Tschierske, Chem. Soc. Rev. 36, 1930 (2007); (c) S. Lee, M. J. Bluemle, and F. S. Bates, Science 330, 349 (2010); (d) J. Zhang and F. S. Bates, J. Am. Chem. Soc. 134, 7636 (2012).
- 16P. Kissel, R. Erni, W. B. Schweizer, M. D. Rossell, B. T. King, T. Bauer, S. Götzinger, A. D. Schlüter, and J. Sakamoto, Nat. Chem. 4, 287 (2012).
- 17D. T. Grubb, J. Mater. Sci. 9, 1715 (1974).
- 18N. Reid, in A. M. Glauert, ed., Practical Methods of Electron Microscopy, American Elsevier Publishing Co., Inc., New York, 1975, pp. 213--353.
- 19U. Kolb, T. Gorelik, C. Kubel, M. T. Otten, and D. Hubert, Ultramicroscopy 107, 507 (2007).
- 20M. S. Isaacson in M. A. Hayat, ed., Principles and Techniques of Electron Microscopy, Vol. 7, Van Nostrand Reinhold Co., New York, 1977, pp. 1--78.
- 21M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, Science 345, 200 (2014).
- 22J. Pacansky, M. Maier, and J. E. Fromm, Ultramicroscopy 16, 81 (1985).
- 23L. E. Thomas, C. J. Humphreys, W. R. Duff, and D. T. Grubb, Radiat. Eff. 3, 89 (1970).
- 24W. Chiu, E. Knapek, T. W. Jeng, and I. Dietrich, Ultramicroscopy 6, 291 (1981).
- 25J. Dubochet, E. Knapek, and I. Dietrich, Ultramicroscopy 1, 156 (1975).
- 26E. Knapek, Ultramicroscopy 6, 71 (1982).
- 27E. Knapek, G. Lefranc, H. G. Heide, and I. Dietrich, Ultramicroscopy 10, 105 (1982).
- 28E. Knapek and J. Dubochet, J. Mol. Biol. 141, 147 (1980).
- 29R. M. Glaser and K. A. Taylor, J. Microsc. 112, 127 (1978).
- 30(a) D. L. Dorset and B. Moss, Polymer 24, 291 (1983); (b) L. F. Drummy, J. Yang, and D. C. Martin, Ultramicroscopy 99, 247 (2004).
- 31G. M. Parkinson, W. Rees, M. J. Goringe, W. Jones, S. Ramdas, J. Thomas, and J. O. Williams, Inst. Phys. Conf. Ser. 41, 172 (1978).
- 32N. Uyeda, T. Kobayashi, E. Suito, Y. Harada, and M. J. Watanabe, J. Appl. Phys. 43, 5181 (1972).
- 33W. R. K. Clark, J. N. Chapman, and R. P. Ferrier, Ultramicroscopy 5, 195 (1980).
- 34D. T. Grubb, J. Mater. Sci. 9, 1715 (1974).
- 35D. G. Howitt and G. Thomas, Radiat. Eff. 34, 209 (1977).
- 36J. R. Fryer and F. Holland, Ultramicroscopy 11, 67 (1983).
- 37Y. Fujiyoshi, T. Kobayashi, K. Ishizuka, N. Uyeda, Y. Ishida, and Y. Harada, Ultramicroscopy 5, 459 (1980).
- 38P. N. T. Unwin and R. Henderson, J. Mol. Biol. 94, 425 (1975).
- 39J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, Science 300, 1419 (2003).
- 40A. H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006).
“Electron-Diffraction Analysis,” in EPST 1st ed., Vol. 5, pp. 641–661, by E. W. Fischer and H. Goddar, Universität Mainz; “Electron Diffraction” in EPSE 2nd ed., Vol. 5, pp. 619–638, by R.H. Geiss, IBM.