Stereoselective Ring-Opening Polymerization of Heterocyclic Monomers
Daisuke Takeuchi
Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan
Search for more papers by this authorDaisuke Takeuchi
Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan
Search for more papers by this authorAbstract
Recent progress in stereoselective ring-opening polymerization of heterocyclic monomers, especially polymerization and copolymerization of epoxides and lactones, is summarized. Zn, Al, Co, and Cr complexes promote stereospecific ring-opening polymerization of epoxides as well as copolymerization of epoxides with carbon dioxide. Enantioselective polymerization of epoxide is also achieved to afford optically active polyethers. Cr and lanthanide complexes promote stereoselective polymerization of β-butyrolactone. Stereospecific polymerization of lactide has been achieved by using varieties of metal catalysts, including Al, Ga, In, Mg, Ca, Sn, Zn, Ti, Zr, Hf, Ge, and rare earth metals. Organic catalysts such as carbenes and phosphazene bases are also utilized for the synthesis of stereoregular polylactide. By utilizing those stereoselective polymerizations, more stereogradient and stereoblock copolymers have been synthesized. Polylactides with high degree of stereoregularity show high melting points. One-to-one mixtures of isotactic poly(l-lactide) and poly(d-lactide) or stereoblock copolymer of l-lactide and d-lactide show higher melting points compared with the polymer of homochiral monomer, due to the formation of stereocomplex.
Bibliography
- 1C. C. Price, M. Osgan, R. E. Hughes, and C. Shambelan, J. Am. Chem. Soc. 78, 690 (1956).
- 2J. Furukawa, T. Tsuruta, R. Sakata, T. Saegusa, and A. Kawasaki, Makromol. Chem. 32, 90 (1959).
- 3R. Sakata, T. Tsuruta, T. Saegusa, and J. Furukawa, Makromol. Chem. 40, 64 (1960).
- 4E. J. Vandenberg, J. Polym. Sci. 47, 486 (1960).
- 5M. Osgan and C. C. Price, J. Polym. Sci. 34, 153 (1959).
- 6R. A. Miller and C. C. Price, J. Polym. Sci. 34, 161 (1959).
- 7S. Inoue, T. Tsuruta, and J. Furukawa, Makromol. Chem. 53, 215 (1962).
- 8T. Hagiwara, M. Ishimori, and T. Tsuruta, Makromol. Chem. 182, 501 (1981).
- 9Y. Hasebe and T. Tsuruta, Makromol. Chem. 188, 1403 (1987).
- 10Y. Hasebe, K. Izumitani, M. Torii, and T. Tsuruta, Makromol. Chem. 191, 107 (1990).
- 11T. Aida and S. Inoue, Acc. Chem. Res. 29, 39 (1996).
- 12N. Takeda and S. Inoue, Makromol. Chem. 179, 1377 (1978).
- 13T. Aida and S. Inoue, Macromolecules 14, 1162 (1981).
- 14A. Sato, T. Hirano, and T. Tsuruta, Makromol. Chem. 176, 1187 (1975).
- 15V. Vincens, A. Le Borgne, and N. Spassky, Makromol. Chem., Rapid Commun. 10, 623 (1989).
- 16V. Vincens, A. Le Borgne, and N. Spassky, Makromol. Chem., Macromol. Symp. 47, 285 (1991).
- 17A. Le Borgne, V. Vincens, M. Jouglard, and N. Spassky, Makromol. Chem., Macromol. Symp. 73, 37 (1993).
- 18W. Kuran, T. Listos, M. Abramczyk, and A. Dawidek, J. Macromol. Sci., Pure Appl. Chem. A35, 427 (1998).
- 19N. Emig, H. Nguyen, H. Krautscheid, R. Réau, J.-B. Cazaux, and G. Bertrand, Organometallics 17, 3599 (1998).
- 20K. Peretti, H. Ajiro, C. T. Cohen, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc. 127, 11566 (2005).
- 21H. Ajiro, K. L. Peretti, E. B. Lobkovsky, and G. W. Coates, Dalton Trans. 8828 (2009).
- 22W. Hirahata, R. M. Thomas, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc. 130, 17658 (2008).
- 23R. M. Thomas, P. C. B. Widger, S. M. Ahmed, R. C. Jeske, W. Hirahata, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc. 132, 16520 (2010).
- 24H. Sugimoto and S. Inoue, J. Polym. Sci., Part A: Polym. Chem. 42, 5561 (2004).
- 25D. J. Darensbourg, Chem. Rev. 107, 2388 (2007).
- 26M. R. Kember, A. Buchard, and C. K. Williams, Chem. Commun. 47, 141 (2011).
- 27S. Inoue, H. Koinuma, and T. Tsuruta, J. Polym. Sci., Part B 7, 287 (1969).
- 28K. Nozaki, K. Nakano, and T. Hiyama, J. Am. Chem. Soc. 121, 11008 (1999).
- 29K. Nakano, K. Nozaki, and T. Hiyama, J. Am. Chem. Soc. 125, 5501 (2003).
- 30M. Cheng, N. A. Darling, E. B. Lobkovsky, and G. W. Coates, Chem. Commun. 2007 (2000).
- 31Z. Qin, C. M. Thomas, S. Lee, and G. W. Coates, Angew. Chem., Int. Ed. 42, 5484 (2003).
- 32X.-B. Lu and Y. Wang, Angew. Chem., Int. Ed. 43, 3574 (2004).
- 33C. T. Cohen and G. W. Coates, J. Polym. Sci., Part A: Polym. Chem. 44, 5182 (2006).
- 34X.-B. Lu, L. Shi, Y.-M. Wang, R. Zhang, Y.-J. Zhang, X.-J. Peng, Z.-C. Zhang, and B. Li, J. Am. Chem. Soc. 128, 1664 (2006).
- 35R. L. Paddock, and S. B. T. Nguyen, Macromolecules 38, 6251 (2005).
- 36C. T. Cohen, T. Chu, and G. W. Coates, J. Am. Chem. Soc. 127, 10869 (2005).
- 37C. T. Cohen, C. M. Thomas, K. L. Peretti, E. B. Lobkovsky, and G. W. Coates, Dalton Trans. 237 (2006).
- 38L. Shi, X.-B. Lu, R. Zhang, X.-J. Peng, C.-Q. Zhang, J.-F. Li, and X.-M. Peng, Macromolecules 39, 5679 (2006).
- 39B. Li, G.-P. Wu, W.-M. Ren, Y.-M. Wang, D.-Y. Rao, and X.-B. Lu, J. Polym. Sci., Part A: Polym. Chem. 46, 6102 (2008).
- 40K. Nakano, S. Hashimoto, M. Nakamura, T. Kamada, and K. Nozaki, Angew. Chem., Int. Ed. 50, 4868 (2011).
- 41Y. Hori, H. Hongo, and T. Hagiwara, Macromolecules 32, 3537 (1999).
- 42Y. Hori, M. Suzuki, A. Yamaguchi, and T. Nishishita, Macromolecules 26, 5533 (1993).
- 43N. Tanahashi and Y. Doi, Macromolecules 24, 5732 (1991).
- 44Y. Zhang, R. A. Gross, and R. W. Lenz, Macromolecules 23, 3206 (1990).
- 45S. Bloembergen, D. A. Holden, T. L. Bluhm, G. K. Hamer, and R. H. Marchessault, Macromolecules 22, 1656 (1989).
- 46B. Wu and R. W. Lenz, Macromolecules 31, 3473 (1998).
- 47Y. Hori and T. Hagiwara, Int. J. Biol. Macromol. 25, 237 (1999).
- 48J. E. Kemnitzer, S. P. McCarthy, and R. A. Gross, Macromolecules 26, 6143 (1993).
- 49J. E. Kemnitzer, S. P. McCarthy, and R. A. Gross, Macromolecules 26, 1221 (1993).
- 50H. R. Kricheldorf, S.-R. Lee, and N. Scharnagl, Macromolecules 27, 3139 (1994).
- 51H. R. Kricheldorf and S. Eggerstedt, Macromolecules 30, 5693 (1997).
- 52M. Arcana, O. Giani-Beaune, F. Schué, W. Amass, and A. Amass, Polym. Int. 49, 1348 (2000).
- 53A. Le Borgne and N. Spassky, Polymer 30, 2312 (1989).
- 54M. Zintl, F. Molnar, T. Urban, V. Bernhart, P. Preishuber-Pflügl, and B. Rieger, Angew. Chem., Int. Ed. 47, 3458 (2008).
- 55R. Reichardt, S. Vagin, R. Reithmeier, A. K. Ott, and B. Rieger, Macromolecules 43, 9311 (2010).
- 56A. Amgoune, C. M. Thomas, S. Ilinca, T. Roisnel, and J.-F. Carpentier, Angew. Chem., Int. Ed. 45, 2782 (2006).
- 57N. Ajellal, M. Bouyahyi, A. Amgoune, C. M. Thomas, A. Bondon, I. Pillin, Y. Grohens, and J.-F. Carpentier, Macromolecules 42, 987 (2009).
- 58M. Bouyahyi, N. Ajellal, E. Kirillov, C. M. Thomas, and J.-F. Carpentier, Chem. Eur. J. 17, 1872 (2011).
- 59W. Zhao, Y. Wang, X. Liu, and D. Cui, Chem. Commun. 48, 4483 (2012).
- 60N. Ajellal, G. Durieux, L. Delevoye, G. Tricot, C. Dujardin, C. M. Thomas, and R. M. Gauvin, Chem. Commun. 46, 1032 (2010).
- 61J. Wu, T.-L. Yu, C.-T. Chen, and C.-C. Lin, Coord. Chem. Rev. 250, 602 (2006).
- 62J. M. Becker, R. J. Pounder, and A. P. Dove, Macromol. Rapid Commun. 31, 1923 (2010).
- 63N. Ajellal, J.-F. Carpentier, C. Guillaume, S. M. Guillaume, M. Helou, V. Poirier, Y. Sarazin, and A. Trifonov, Dalton Trans. 39, 8363 (2010).
- 64D. Bourissou, B. Martin-Vaca, A. Dumitrescu, M. Graullier, and F. Lacombe, Macromolecules 38, 9993 (2005).
- 65R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater. 12, 1841 (2000).
- 66Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, Macromolecules 20, 904 (1987).
- 67H. Tsuji and Y. Ikada, Polymer 40, 6699 (1999).
- 68N. Yui, P. J. Dijkstra, and J. Feijen, Makromol. Chem. 191, 481 (1990).
- 69N. Nomura, J. Hasegawa, and R. Ishii, Macromolecules 42, 4907 (2009).
- 70E. J. Shin, A. E. Jones, and R. M. Waymouth, Macromolecules 45, 595 (2012).
- 71C. Agatemor and M. P. Shaver, Biomacromolecules 14, 699 (2013).
- 72A. Le Borgne, V. Vincens, M. Jouglard, and N. Spassky, Makromol. Chem., Macromol. Symp. 73, 37 (1993).
- 73M. Wisniewski, A. Le Borgne, and N. Spassky, Macromol. Chem. Phys. 198, 1227 (1997).
- 74A. Bhaw-Luximon, D. Jhurry, and N. Spassky, Polym. Bull. 44, 31 (2000).
- 75D. Jhurry, A. Bhaw-Luximon, and N. Spassky, Macromol. Symp. 175, 67 (2001).
- 76N. Spassky, M. Wisniewski, C. Pluta, and A. Le Borgne, Macromol. Chem. Phys. 197, 2627 (1996).
- 77C. P. Radano, G. L. Baker, and M. R. Smith, III., J. Am. Chem. Soc. 122, 1552 (2000).
- 78T. M. Ovitt and G. W. Coates, J. Polym. Sci., Part A: Polym. Chem. 38, 4686 (2000).
- 79T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc. 124, 1316 (2002).
- 80K. Majerska and A. Duda, J. Am. Chem. Soc. 126, 1026 (2004).
- 81Z. Zhong, P. J. Dijkstra, and J. Feijen, Angew. Chem., Int. Ed. 41, 4510 (2002).
10.1002/1521-3773(20021202)41:23<4510::AID-ANIE4510>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 82Z. Zhong, P. J. Dijkstra, and J. Feijen, J. Am. Chem. Soc. 125, 11291 (2003).
- 83M. H. Chisholm, N. J. Patmore, and Z. P. Zhou, Chem. Commun. 127 (2005).
- 84M. H. Chisholm, J. C. Gallucci, K. T. Quisenberry, and Z. Zhou, Inorg. Chem. 47, 2613 (2008).
- 85N. Nomura, R. Ishii, M. Akakura, and K. Aoi, J. Am. Chem. Soc. 124, 5938 (2002).
- 86R. Ishii, N. Nomura, and T. Kondo, Polym. J. 36, 261 (2004).
- 87N. Nomura, R. Ishii, Y. Yamamoto, and T. Kondo, Chem. Eur. J. 13, 4433 (2007).
- 88Z. Tang, X. Chen, X. Pang, Y. Yang, X. Zhang, and X. Jing, Biomacromolecules 5, 965 (2004).
- 89Z. Tang, X. Chen, Y. Yang, X. Pang, J. Sun, X. Zhang, and X. Jing, J. Polym. Sci., Part A: Polym. Chem. 42, 5974 (2004).
- 90P. Hormnirun, E. L. Marshall, V. C. Gibson, R. I. Pugh, and A. J. P. Whtie, Proc. Natl. Acad. Sci. U. S. A 103, 15343 (2006).
- 91H. Du, X. Pang, H. Yu, X. Zhuang, X. Chen, D. Cui, X. Wang, and X. Jing, Macromolecules 40, 1904 (2007).
- 92H.-L. Chen, S. Dutta, P.-Y. Huang, and C.-C. Lin, Organometallics 31, 2016 (2012).
- 93X. Pang, H. Du, X. Chen, X. Zhuang, D. Cui, and X. Jing, J. Polym. Sci., Part A: Polym. Chem. 43, 6605 (2005).
- 94X. Pang, X. Chen, H. Du, X. Wang, and X. Jing, J. Organomet. Chem. 692, 5605 (2007).
- 95X. Pang, H. Du, X. Chen, X. Wang, and X. Jing, Chem. Eur. J. 14, 3126 (2008).
- 96H. Du, A. H. Velders, P. J. Dijkstra, Z. Zhong, X. Chen, and J. Feijen, Macromolecules 42, 1058 (2009).
- 97C. Bakewell, R. H. Platel, S. K. Cary, S. M. Hubbard, J. M. Roaf, A. C. Levine, A. J. P. White, N. J. Long, M. Haaf, and C. K. Williams, Organometallics 31, 4729 (2012).
- 98P. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P. Whtie, and D. J. Williams, J. Am. Chem. Soc. 126, 2688 (2004).
- 99Z. Tang and V. C. Gibson, Eur. Polym. J. 43, 150 (2007).
- 100K. Matsubara, C. Terata, H. Sekine, K. Yamatani, T. Harada, K. Eda, M. Dan, Y. Koga, and M. Yasuniwa, J. Polym. Sci., Part A: Polym. Chem. 50, 957 (2012).
- 101P. Horeglad, G. Szczepaniak, M. Dranka, and J. Zachara, Chem. Commun. 48, 1171 (2012).
- 102A. F. Douglas, B. O. Patrick, and P. Mehrkhodavandi, Angew. Chem., Int. Ed. 47, 2290 (2008).
- 103I. Yu, A. Acosta-Ramírez, and P. Mehrkhodavandi, J. Am. Chem. Soc. 134, 12758 (2012).
- 104P. L. Arnold, J.-C. Buffet, R. P. Blaudeck, S. Sujecki, A. J. Blake, and C. Wilson, Angew. Chem., Int. Ed. 47, 6033 (2008).
- 105J.-C. Buffet, J. Okuda, and P. L. Arnold, Inorg. Chem. 49, 419 (2010).
- 106C. Bakewell, T.-P.-A. Cao, N. Long, X. F. Le Goff, A. Auffrant, and C. K. Williams, J. Am. Chem. Soc. 134, 20577 (2012).
- 107I. L. Fedushkin, A. G. Morozov, V. A. Chudakova, G. K. Fukin, and V. K. Cherkasov, Eur. J. Inorg. Chem. 4995 (2009).
- 108A. P. Dove, H. Li, R. C. Pratt, B. G. G. Lohmeijer, D. A. Culkin, R. M. Waymouth, and J. L. Hedrick, Chem. Commun. 2881 (2006).
- 109L. Zhang, F. Nederberg, J. M. Messman, R. C. Pratt, J. L. Hedrick, and C. G. Wade, J. Am. Chem. Soc. 129, 12610 (2007).
- 110L. Zhang, F. Nederberg, R. C. Pratt, R. M. Waymouth, J. L. Hedrick, and C. G. Wade, Macromolecules 40, 4154 (2007).
- 111G. M. Miyake and E. Y.-X. Chen, Macromolecules 44, 4115 (2011).
- 112C. A. Wheaton, P. G. Hayes, and B. J. Ireland, Dalton Trans. 4832 (2009).
- 113M. Cheng, A. B. Attygalle, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc. 121, 11583 (1999).
- 114B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc. 123, 3229 (2001).
- 115A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. P. White, and D. J. Williams, Dalton Trans. 570 (2004).
- 116M. H. Chisholm, J. C. Huffman, and K. Phomphrai, J. Chem. Soc., Dalton Trans. 222 (2001).
- 117M. H. Chisholm, J. Gallucci, and K. Phomphrai, Inorg. Chem. 41, 2785 (2002).
- 118C. N. Ayala, M. H. Chisholm, J. C. Gallucci, and C. Krempner, Inorg. Chem. 9237 (2009).
- 119H.-Y. Chen, H.-Y. Tang, and C.-C. Lin, Macromolecules 39, 3745 (2006).
- 120D. J. Darensbourg and O. Karroonnirun, Inorg. Chem. 49, 2360 (2010).
- 121Y. Huang, W.-C. Hung, M.-Y. Liao, T.-E. Tsai, Y.-L. Peng, and C.-C. Lin, J. Polym. Sci., Part A: Polym. Chem. 47, 2318 (2009).
- 122A. Otero, J. Fernández-Baeza, L. F. Sánchez-Barba, J. Tejeda, M. Honrado, A. Garcés, A. Lara-Sanchez, and A. M. Rodríguez, Organometallics 31, 4191 (2012).
- 123I. D'Auria, M. Lamberti, M. Mazzeo, S. Milione, G. Roviello, and C. Pellecchia, Chem. Eur. J. 18, 2349 (2012).
- 124L. F. Sánchez-Barba, A. Garcés, J. Fernández-Baeza, A. Otero, C. Alonso-Moreno, A. Lara-Sénchez, and A. M. Rodríguez, Organometallics 30, 2775 (2012).
- 125M. H. Chisholm, J. C. Gallucci, and K. Phomphrai, Chem. Commun. 48 (2003).
- 126M. H. Chisholm, J. C. Gallucci, and K. Phomphrai, Inorg. Chem. 43, 6717 (2004).
- 127M. H. Chisholm, Inorg. Chim. Acta 362, 4284 (2009).
- 128D. J. Darensbourg, W. Choi, O. Karroonnirun, and N. Bhuvanesh, Macromolecules 41, 3493 (2008).
- 129D. J. Darensbourg, W. Choi, and C. P. Richers, Macromolecules 40, 3521 (2007).
- 130H. Ma, G. Melillo, L. Oliva, T. P. Spaniol, U. Englert, and J. Okuda, Dalton Trans. 721 (2005).
- 131P. Horeglad, P. Kruk, and J. Pécaut, Organometallics 29, 3729 (2010).
- 132A. Pietrangelo, M. A. Hillmyer, and W. B. Tolman, Chem. Commun. 2736 (2009).
- 133A. Pietrangelo, S. C. Knight, A. K. Gupta, L. J. Yao, M. A. Hillmyer, and W. B. Tolman, J. Am. Chem. Soc. 132, 11649 (2010).
- 134M. P. Blake, A. D. Schwarz, and P. Mountford, Organometallics 30, 1202 (2011).
- 135A. J. Chmura, C. J. Chuck, M. G. Davidson, M. D. Jones, M. D. Lunn, S. D. Bull, and M. F. Mahon, Angew. Chem., Int. Ed. 46, 2280 (2007).
- 136A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. P. White, and D. J. Williams, Chem. Commun. 283 (2001).
- 137A. P. Dove, V. C. Gibson, E. L. Marshall, H. S. Rzepa, A. J. P. White, and D. J. Williams, J. Am. Chem. Soc. 128, 9834 (2006).
- 138S. K. Russell, C. L. Gamble, K. J. Gibbins, K. C. S. Juhl, W. S. Mitchell, III, A. J. Tumas, and G. E. Hofmeister, Macromolecules 38, 10336 (2005).
- 139J. Ejfler, M. Kobytka, L. B. Jerzykiewicz, and P. Sobota, J. Mol. Catal. A: Chem. 257, 105 (2006).
- 140A. J. Chmura, D. M. Cousins, M. G. Davidson, M. D. Jones, M. D. Lunn, and M. F. Mahon, Dalton Trans. 1437 (2008).
- 141A. L. Zelikoff, J. Kopilov, I. Goldberg, G. W. Coates, and M. Kol, Chem. Commun. 6804 (2009).
- 142A. J. Chmura, D. M. G. Davidson, C. J. Frankis, M. D. Jones, and M. D. Lunn, Chem. Commun. 1293 (2008).
- 143E. Sergeeva, J. Kopilov, I. Goldberg, and M. Kol, Inorg. Chem. 49, 3977 (2010).
- 144C. Romain, B. Heinrich, S. B. Laponnaz, and S. Dagorne, Chem. Commun. 48, 2213 (2012).
- 145C.-X. Cai, A. Amgoune, C. W. Lehmann, and J.-F. Carpentier, Chem. Commun. 330 (2004).
- 146A. Amgoune, C. M. Thomas, T. Roisnel, and J.-F. Carpentier, Chem. Eur. J. 12, 169 (2006).
- 147F. Bonnet, A. R. Cowley, and P. Mountford, Inorg. Chem. 44, 9046 (2005).
- 148H. E. Dyer, S. Huijser, N. Susperregui, F. Bonnet, A. D. Schwarz, R. Duchateau, L. Maron, and P. Mountford, Organometallics 29, 3602 (2010).
- 149X. Liu, X. Shang, T. Tang, N. Hu, F. Pei, D. Cui, X. Chen, and X. Jing, Organometallics 26, 2747 (2007).
- 150W. Zhao, D. Cui, X. Liu, and X. Chen, Macromolecules 43, 6678 (2010).
- 151S. Yang, Z. Du, Y. Zhang, and Q. Shen, Chem. Commun. 48, 9780 (2012).
- 152H. Ma, T. P. Spaniol, and J. Okuda, Angew. Chem., Int. Ed. 45, 7818 (2006).
- 153H. Ma, T. P. Spaniol, and J. Okuda, Inorg. Chem. 47, 3328 (2008).
- 154A. Kapelski, J.-C. Buffet, T. P. Spaniol, and J. Okuda, Chem. Asian J. 7, 1320 (2012).
- 155L. Clark, M. G. Cushion, H. E. Dyer, A. D. Schwarz, R. Duchateau, and P. Moutford, Chem. Commun. 46, 273 (2010).
- 156R. H. Platel, A. J. P. White, and C. K. Williams, Inorg. Chem. 47, 6840 (2008).
- 157R. H. Platel, A. J. P. White, and C. K. Williams, Chem. Commun. 4115 (2009).
- 158T.-P.-A. Cao, A. Buchard, X. F. Le Goff, A. Auffrant, and C. K. Williams, Inorg. Chem. 51, 2157 (2012).
- 159C. Bakewell, T.-P.-A. Cao, X. F. Le Goff, N. J. Long, A. Auffrant, and C. K. Williams, Organometallics 32, 1475 (2013).
- 160M. Sinenkov, E. Kirillov, T. Roisnel, G. Fukin, A. Trifonov, and J.-F. Carpentier, Organometallics 30, 5509 (2011).
- 161Y. Wang, Y. Luo, J. Chen, H. Xue, and H. Liang, New J. Chem. 36, 933 (2012).
- 162W. Zhao, Y. Wang, X. Liu, X. Chen, D. Cui, and E. Y.-X. Chen, Chem. Commun. 48, 6375 (2012).
- 163W. Zhao, Y. Wang, X. Liu, X. Chen, and D. Cui, Chem. Asian J. 7, 2403 (2012).
- 164T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc. 121, 4072 (1999).
- 165J.-C. Buffet, A. Kapelski, and J. Okuda, Macromolecules 43, 10201 (2010).
- 166J.-C. Buffet and J. Okuda, Chem. Commun. 47, 4796 (2011).
Further Reading
- J. Wu, T.-L. Yu, C.-T. Chen, and C.-C. Lin, Coord. Chem. Rev. 250, 602 (2006).
- R. H. Platel, L. M. Hodgson, and C. K. Williams, Polym. Rev. 48, 11 (2008).
- C. M. Thomas, Chem. Soc. Rev. 39, 165 (2010).
- M. J. Stanford and A. P. Dove, Chem. Soc. Rev. 39, 486 (2010).
- J. M. Becker, R. J. Pounder, and A. P. Dove, Macromol. Rapid Commun. 31, 1923 (2010).
- J.-F. Carpentier, Macromol. Rapid Commun. 31, 1696 (2010).
- P. J. Dijkstra, H. Du, and J. Feijen, Polym. Chem. 2, 520 (2011).
- J-C. Buffet and J. Okuda, Polym. Chem. 2, 2758 (2011).
- S. Dagorne, M. Normand, E. Kirillov, and J.-F. Carpentier, Coord. Chem. Rev. 257, 1869 (2013).
- A. Sauer, A. Kapelski, C. Fliedel, S. Dagorne, M. Kol, and J. Okuda, Dalton Trans. 42, 9007 (2013).
Stereoselective polymerization of lactides and lactones: