Silicon-Containing Preceramic Polymers
Gabriela Mera
Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorEmanuel Ionescu
Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorGabriela Mera
Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorEmanuel Ionescu
Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorAbstract
Polymer-to-ceramic transformation is a suitable technology to produce a broad spectrum of ceramic-based composite materials with adjusted chemical, mechanical, and physical properties. Their properties depend on the chemical structure of preceramic polymers, the carbon content of the ceramic, the conditions used for pyrolysis (eg, temperature, atmosphere) as well as the use of additional active or passive fillers.
The intimate relationship between the molecular architecture of the precursor and the nano/microstructure as well as the functional and structural properties of the resulting ceramics is one of the most important features of this class of ceramics. Chemical design of precursors, such as polysilanes, polycarbosilanes, polysiloxanes, polysilazanes, and polysilylcarbodiimides, enables the production of nanostructured SiC, SiOC, and SiCN ceramics via thermal conversion in an inert or active atmosphere. A key aspect of a polymer-derived ceramics (PDCs) route is the possibility to “dissolve” carbon in phases such as Si3N4 and SiO2 and to create ternary phase ceramics such as SiOC and SiCN, which is only realizable by using single-source-precursors techniques.
Synthetic routes for silicon-based polymers as well as their transformation steps to ceramics (namely cross-linking and pyrolysis) will be presented in this review. A short overview on PDCs as a unique class of ceramics is provided as well. Preceramic polymers, which are used for the synthesis of multinary PDCs such as SiBCN and SiMOCN (M = metal), are also described.
Bibliography
- 1 R. Riedel, G. Mera, R. Hauser, and A. Klonczynski, J. Ceram. Soc. Jpn. 114, 425–444 (2006).
- 2 G. Mera and R. Riedel, in P. Colombo, R. Riedel, G. D. Soraru, and H.-J. Kleebe, eds., Polymer Derived Ceramics: From Nanostructure to Applications, DEStech Publications, Inc., Lancaster, Pa., 2010, pp 51–89.
- 3 P. Colombo, G. Mera, R. Riedel, and G. D. Soraru, J. Am. Ceram. Soc. 93, 1805–1837 (2010).
- 4 E. Ionescu, H.-J. Kleebe, and R. Riedel, Chem. Soc. Rev. 41, 5032–5052 (2012).
- 5 E. Ionescu, C. Gervais, and F. Babonneau, in P. Colombo, R. Riedel, G. D. Soraru, H.-J. Kleebe, eds., Polymer Dervided Ceramics: From Nanostructure to Applications, DEStech Publications Inc., Lancaster, Pa., 2010, pp. 108–127.
- 6
E. Ionescu and
R. Riedel, in
N. Bansal and
A. Boccaccini, eds.,
Ceramics and Composites Processing Methods,
John Wiley & Sons,
Hoboken, N.J.,
2012, pp
235–270.
10.1002/9781118176665.ch7 Google Scholar
- 7 P. Greil, J. Am. Ceram. Soc. 78, 835–848 (1995).
- 8 P. Greil, J. Eur. Ceram. Soc. 18, 1905–1914 (1998).
- 9 G. Mera, R. Riedel, F. Poli, and K. Muller, J. Eur. Ceram. Soc 29, 2873–2883 (2009).
- 10 Y. D. Blum, D. B. MacQueen, and H. J. Kleebe, J. Eur. Ceram. Soc. 25, 143–149 (2005).
- 11 H.-J. Kleebe, G. Gregori, F. Babonneau, Y. D. Blum, D. B. MacQueen, and S. Masse, Int. J. Mater. Res. 97, 699–709 (2006).
- 12 G. Gregori, H.-J. Kleebe, Y. D. Blum, and F. Babonneau, Int. J. Mater. Res. 97, 710–720 (2006).
- 13 H.-J. Kleebe and Y. D. Blum, J. Eur. Ceram. Soc. 28, 1037–1042 (2008).
- 14 J. Kaspar, G. Mera, A. P. Nowak, M. Graczyk-Zajac, and R. Riedel, Electrochim. Acta 56, 174–182 (2010).
- 15 M. Graczyk-Zajac, G. Mera, J. Kaspar, and R. Riedel, J. Eur. Ceram. Soc 30, 3235–3243 (2010).
- 16 R. M. Prasad, G. Mera, K. Morita, M. Muller, H.-J. Kleebe, A. Gurlo, C. Fasel, and R. Riedel, J. Eur. Ceram. Soc 32, 477–484 (2012).
- 17 R. Riedel, L. Toma, E. Janssen, J. Nuffer, T. Melz, and H. Hanselka, J. Am. Ceram. Soc. 93, 920–924 (2010).
- 18 L. Toma, H.-J. Kleebe, M. M. Müller, E. Janssen, R. Riedel, T. Melz, and H. Hanselka, J. Am. Ceram. Soc. 95, 1056–1061 (2011).
- 19 R. Riedel and M. Seher, J. Eur. Ceram. Soc. 7, 21–25 (1991).
- 20 M. Seher, J. Bill, F. Aldinger, and R. Riedel, J. Cryst. Growth 137, 452–456 (1994).
- 21 G. Pezzotti and K. Ota, J. Am. Ceram. Soc. 80, 599–603 (1997).
- 22 G. Pezzotti, K. Ota, and H. J. Kleebe, J. Am. Ceram. Soc. 80, 2341–2348 (1997).
- 23 R. D. Miller and J. Michl, Chem. Rev. 89, 1359–1410 (1989).
- 24 R. West, J. Organomet. Chem. 300, 327–346 (1986).
- 25 R. West, J. Maxka, R. Sinclair, and P. Cotts, Abstr. Pap. Am. Chem. Soc. 193, 11–Inor (1987).
- 26 R. West and J. Maxka, ACS Symp. Ser. 360, 6–20 (1988).
- 27 K. J. Wynne, ACS Symp. Ser. 360, 1–4 (1988).
- 28 F. S. Kipping and J. E. Sands, J. Chem. Soc., Trans. 119, 830 (1921).
- 29 F. S. Kipping, J. Chem. Soc., Trans. 125, 2291 (1924).
- 30 J. P. Wesson and T. C. Williams, J. Polym. Sci.: Polym. Chem. Ed. 17, 2833–2843 (1979).
- 31 R. West, L. D. David, P. I. Djurovich, K. L. Stearley, K. S. V. Srinivasan, and H. Yu, J. Am. Chem. Soc. 103, 7352–7354 (1981).
- 32 R. E. Trujillo, J. Organomet. Chem. 198, C27–C28 (1980).
- 33 T. Kawabe, M. Naito, and M. Fujiki, Macromolecules 41, 1952–1960 (2008).
- 34 R. G. Jones and S. J. Holder, Polym. Int. 55, 711–718 (2006).
- 35 U. Herzog and R. West, Macromolecules 32, 2210–2214 (1999).
- 36 B. Lacave-Goffin, L. Hevesi, and J. Devaux, J. Chem. Soc., Chem. Commun. 769 (1995).
- 37 R. G. Jones, R. E. Benfield, P. J. Evans, and A. C. Swain, J. Chem. Soc., Chem. Commun. 1465 (1995).
- 38 L. S. Chang and J. Y. Corey, Organometallics 8, 1885–1893 (1989).
- 39 H. G. Woo, J. F. Walzer, and T. D. Tilley, J. Am. Chem. Soc. 114, 7047–7055 (1992).
- 40 K. Sakamoto, K. Obata, H. Hirata, M. Nakajima, and H. Sakurai, J. Am. Chem. Soc. 111, 7641–7643 (1989).
- 41 M. Cypryk, Y. Gupta, and K. Matyjaszewski, J. Am. Chem. Soc. 113, 1046–1047 (1991).
- 42 S. Kashimura, Y. Tane, M. Ishifune, Y. Murai, S. Hashimoto, T. Nakai, R. Hirose, and H. Murase, Tetrahedron Lett. 49, 269–271 (2008).
- 43 S. H. Yajima J. Chem. Lett. 9, 1 (1975).
- 44 K. Shiina and M. Kumada, J. Org. Chem. 23, 139–139 (1958).
- 45 C. K. Whitmarsh and L. V. Interrante, Organometallics 10, 1336–1344 (1991).
- 46 J. Smith, L. Troy, and L. Baton Rouge, Process for the Production of Silicon Carbide by the Pyrolysis of a Polycarbosilane Polymer, Ethyl Corporation, Richmond, Va., 1986.
- 47 H. J. Wu and L. V. Interrante, Macromolecules 25, 1840–1841 (1992).
- 48 K. Nate, T. Inoue, H. Sugiyama, and M. Ishikawa, J. Appl. Polym. Sci. 34, 2445–2455 (1987).
- 49 T. Iwahara, S. Hayase and R. West, Macromolecules 23, 1298–1301 (1990).
- 50 R. J. P. Corriu, C. Guerin, B. Henner, T. Kuhlmann, A. Jean, F. Garnier, and A. Yassar, Chem. Mater. 2, 351–352 (1990).
- 51 J. Ohshita, D. Kanaya, M. Ishikawa, and T. Yamanaka, J. Organomet. Chem. 369, C18-C20 (1989).
- 52 J. Ohshita and A. Kunai, Acta Polym. 49, 379–403 (1998).
- 53 E. Bacque, J. P. Pillot, M. Birot, J. Dunogues, and G. Bourgeois, J. Organomet. Chem. 346, 147–160 (1988).
- 54 E. Bacque, J. P. Pillot, M. Birot, and J. Dunogues, Macromolecules 21, 34–38 (1988).
- 55 Y. H. Kim, Y. S. Gal, U. Y. Kim, and S. K. Choi, Macromolecules 21, 1991–1995 (1988).
- 56 J. Shinar, S. Ijadimaghsoodi, Q. X. Ni, Y. Pang, and T. J. Barton, Synth. Met. 28, C593-C598 (1989).
- 57 X. H. Zhang, Q. S. Zhou, W. P. Weber, R. F. Horvath, T. H. Chan, and G. Manuel, Macromolecules 21, 1563–1566 (1988).
- 58 Y. T. Park, Q. S. Zhou, and W. P. Weber, Polym. Bull. 22, 349–353 (1989).
- 59 Y. T. Park, G. Manuel, and W. P. Weber, Macromolecules 23, 1911–1915 (1990).
- 60 S. Q. Zhou and W. P. Weber, Macromolecules 23, 1915–1917 (1990).
- 61 Q. S. Zhou, G. Manuel, and W. P. Weber, Macromolecules 23, 1583–1586 (1990).
- 62 D. Seyferth, ACS Symp. Ser. 360, 21–42 (1988).
- 63 G. Mera, PhD Thesis, Ruhr-Universität Bochum, 2005.
- 64
R. G. Jones,
W. Ando, and
J. Chojnowski, eds.,
Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications,
Kluwer Academic Publishers,
Dordrecht, the Netherlands,
2000.
10.1007/978-94-011-3939-7 Google Scholar
- 65 F. Babonneau, K. Thorne, and J. D. Mackenzie, Chem. Mater. 1, 554–558 (1989).
- 66 G. D. Soraru, J. Sol-Gel Sci. Technol. 2, 843–848 (1994).
- 67 G. D. Soraru, G. D'Andrea, R. Campostrini, F. Babonneau, and G. Mariotto, J. Am. Ceram. Soc. 78, 379–387 (1995).
- 68 S. Dire, R. Ceccato, and F. Babonneau, J. Sol-Gel Sci. Technol. 34, 53–62 (2005).
- 69 S. Dire, R. Campostrini, and R. Ceccato, Chem. Mater. 10, 268–278 (1998).
- 70 B. Alonso and C. Sanchez, J. Mater. Chem. 10, 377–386 (2000).
- 71 H. H. Huang, B. Orler, and G. L. Wilkes, Macromolecules 20, 1322–1330 (1987).
- 72 H. H. Huang and G. L. Wilkes, Polym. Bull. 18, 455–462 (1987).
- 73 S. Dire, F. Babonneau, C. Sanchez, and J. Livage, J. Mater. Chem. 2, 239–244 (1992).
- 74 N. Yamada, I. Yoshinaga, and S. Katayama, J. Mater. Chem. 7, 1491–1495 (1997).
- 75 M. Fukushima, E. Yasuda, Y. Nakamura, and Y. Tanabe, J. Ceram. Soc. Jpn. 111, 857–859 (2003).
- 76 A. Saha, S. R. Shah, and R. Raj, J. Am. Ceram. Soc. 86, 1443–1445 (2003).
- 77 A. Saha, S. R. Shah, and R. Raj, J. Am. Ceram. Soc. 87, 1556–1558 (2004).
- 78 M. Fukushima, E. Yasuda, Y. Nakamura, M. Shimizu, Y. Teranishi, L. M. Manocha, and Y. Tanabe, J. Sol-Gel Sci. Technol. 34, 15–21 (2005).
- 79 E. Ionescu, C. Linck, C. Fasel, M. Mueller, H.-J. Kleebe, and R. Riedel, J. Am. Ceram. Soc. 93, 241–250 (2010).
- 80 E. Ionescu, B. Papendorf, H.-J. Kleebe, F. Poli, K. Muller, and R. Riedel, J. Am. Ceram. Soc. 93, 1774–1782 (2010).
- 81 E. Kroke, Y. L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel, Mater. Sci. Eng., R 26, 97–199 (2000).
- 82 D. M. Narsavage, L. V. Interrante, P. S. Marchetti, and G. E. Maciel, Chem. Mater. 3, 721–730 (1991).
- 83 H. Schutzenberger, C. R. Colson, and C. R. Hebd, Seances Acad. Sci. 92, 1508–1511 (1885).
- 84 O. Glemser, and P. Naumann, Z. Anorg. Allg. Chem. 298, 134–141 (1959).
- 85 D. Seyferth, G. H. Wiseman, and C. Prudhomme, J. Am. Ceram. Soc. 66, C13–C14 (1983).
- 86 M. Arai, S. Sakurada, T. Isoda, and H. Tomizawa, Abstr. Pap. Am. Chem. S. 193, 41–Inor (1987).
- 87 C. R. Blanchard and S. T. Schwab, J. Am. Ceram. Soc. 77, 1729–1739 (1994).
- 88 D. Seyferth and G. H. Wiseman, J. Am. Ceram. Soc. 67, C132–C133 (1984).
- 89 Y. Iwamoto, K. Kikuta, and S. Hirano, J. Ceram. Soc. Jpn. 108, 1072–1078 (2000).
- 90 Y. Iwamoto, K. Kikuta, and S. Hirano, J. Ceram. Soc. Jpn. 108, 350–356 (2000).
- 91 B. Papendorf, K. Nonnenmacher, E. Ionescu, H.-J. Kleebe, and R. Riedel, Small 7, 970–978 (2011).
- 92 E. Ionescu, B. Papendorf, H.-J. Kleebe, H. Breitzke, K. Nonnenmacher, G. Buntkowsky, and R. Riedel, J. Eur. Ceram. Soc. 32, 1873–1881 (2012).
- 93 G. Mera, R. Riedel, F. Poli, and K. Muller, J. Eur. Ceram. Soc. 29, 2873–2883 (2009).
- 94 E. A. Ebsworth and M. J. Mays, Angew. Chem. 74, 117 (1962).
- 95 E. A. Ebsworth and M. J. Mays, J. Chem. Soc. 4879–& (1961).
- 96
J. Pump and
U. Wannagat,
Angew. Chem., Int. Ed.
1,
112–113
(1962).
10.1002/anie.196201123 Google Scholar
- 97 J. Pump and U. Wannagat, Liebigs Ann. Chem. 652, 21 (1962).
- 98 L. Birkofer, A. Ritter, P. Richter, Tetrahedron Lett. 195–198 (1962).
- 99 U.S. Patent 3,352,799 (1968), J. F. Klebe and J. G. Murray, Organosiliconcarbodiimide polymers and process for their preparation.
- 100 G. A. Razuvaev, A. S. Gordetsov, A. P. Kozina, T. N. Brevnova, V. V. Semenov, S. E. Skobeleva, N. A. Boxer, and Y. I. Dergunov, J. Organomet. Chem. 327, 303–309 (1987).
- 101 V. I. Gorbatenko, M. N. Gertsyuk, and L. I. Samarai, Zh. Org. Khim. 13, 899–899 (1977).
- 102 A. S. Gordetsov, V. P. Kozyukov, I. A. Vostokov, S. V. Sheludyakova, Y. I. Dergunov, and V. F. Mironov, Usp. Khim. 51, 848–878 (1982).
- 103 R. Riedel, E. Kroke, A. Greiner, A. O. Gabriel, L. Ruwisch, J. Nicolich, and P. Kroll, Chem. Mater. 10, 2964–2979 (1998).
- 104 R. M. Morcos, G. Mera, A. Navrotsky; T. Varga, R. Riedel, F. Poli, and K. Muller, J. Am. Ceram. Soc. 91, 3349–3354 (2008).
- 105 G. Mera, A. Tamayo, H. Nguyen, S. Sen, and R. Riedel, J. Am. Ceram. Soc. 93, 1169–1175 (2010).
- 106 S. Widgeon, G. Mera, Y. Gao, E. Stoyanov, S. Sen, A. Navrotsky, and R. Riedel, Chem. Mater. 24, 1181–1191 (2012).
- 107 Y. Gao, G. Mera, H. Nguyen, K. Morita, H.-J. Kleebe, and R. Riedel, J. Eur. Ceram. Soc. 32, 1857–1866 (2012).
- 108 J. Pump and E. G. Rochow, Z. Anorg. Allg. Chem. 330, 101–106 (1964).
- 109
A. O. Gabriel,
R. Riedel,
S. Storck, and
W. F. Maier,
Appl. Organomet. Chem.
11,
833–841
(1997).
10.1002/(SICI)1099-0739(199710/11)11:10/11<833::AID-AOC643>3.0.CO;2-S CAS Web of Science® Google Scholar
- 110 D. S. Kim, E. Kroke, R. Riedel, A. O. Gabriel, and S. C. Shim, Appl. Organomet. Chem. 13, 495–499 (1999).
- 111 A. O. Gabriel, R. Riedel, W. Dressler, S. Reichert, C. Gervais, J. Maquet, and F. Babonneau, Chem. Mater. 11, 412–420 (1999).
- 112 S. Nahar-Borchart, E. Kroke, R. Riedel, B. Boury, and R. J. P. Corriu, J. Organomet. Chem. 686, 127–133 (2003).
- 113 Y. Iwamoto, W. Volger, E. Kroke, R. Riedel, T. Saitou, and K. Matsunaga, J. Am. Ceram. Soc. 84, 2170–2178 (2001).
- 114 A. Kienzle, J. Bill, F. Aldinger, and R. Riedel, Nanostruct. Mater. 6, 349–352 (1995).
- 115 R. Riedel, A. Greiner, G. Miehe, W. Dressler, H. Fuess, J. Bill, and F. Aldinger, Angew. Chem. Int. Ed. Engl. 36, 603–606 (1997).
- 116 W. Dressler and R. Riedel, Int. J. Refract. Meter. H 15, 13–47 (1997).
- 117 H. D. Schadler, L. Jager, and I. Senf, Z. Anorg. Allg. Chem. 619, 1115–1120 (1993).
- 118 Y. L. Li, E. Kroke, A. Klonczynski, and R. Riedel, Adv. Mater. 12, 956-+ (2000).
- 119 P. Kroll, M. Andrade, X. H. Yan, E. Ionescu, G. Miehe, and R. Riedel, J. Phys. Chem. C 116, 526–531 (2012).
- 120 Patent DE102012004278A1 (2012), I. Fergen, W. Kolbe, M. Kraft, J. Harenburg, M. Zschuppe, R. Riedel, and E. Ionescu, Beschichtungszusammensetzung für abriebbeständige und antiadhäsive Oberflächenbeschichtungen
- 121 M. Weinmann, R. Haug, J. Bill, F. Aldinger, J. Schuhmacher, and K. Muller, J. Organomet. Chem. 541, 345–353 (1997).
- 122
M. Weinmann,
R. Haug,
J. Bill,
M. de Guire, and
F. Aldinger,
Appl. Organomet. Chem.
12,
725–734
(1998).
10.1002/(SICI)1099-0739(199810/11)12:10/11<725::AID-AOC777>3.0.CO;2-2 CAS Web of Science® Google Scholar
- 123 J. Schuhmacher, M. Weinmann, J. Bill, F. Aldinger, and K. Muller, Chem. Mater. 10, 3913–3922 (1998).
- 124 J. Bill, T. W. Kamphowe, A. Muller, T. Wichmann, A. Zern, A. Jalowieki, J. Mayer, M. Weinmann, J. Schuhmacher, K. Muller, J. Q. Peng, H. J. Seifert, and F. Aldinger, Appl. Organomet. Chem. 15, 777–793 (2001).
- 125 J. Schuhmacher, F. Berger, M. Weinmann, J. Bill, F. Aldinger, and K. Muller, Appl. Organomet. Chem. 15, 809–819 (2001).
- 126 A. Muller, P. Gerstel, M. Weinmann, J. Bill, and F. Aldinger, J. Eur. Ceram. Soc. 21, 2171–2177 (2001).
- 127 M. Weinmann, M. Horz, F. Berger, A. Muller, K. Muller, and F. Aldinger, J. Organomet. Chem. 659, 29–42 (2002).
- 128 J. Haug, P. Lamparter, M. Weinmann, and F. Aldinger, Chem. Mater. 16, 83–92 (2004).
- 129 M. Weinmann, A. Zern, M. Horz, F. Berger, K. Muller, and F. Aldinger, Mater. Sci. Forum 386–3, 335–340 (2002).
- 130 S. Yajima, Y. Hasegawa, J. Hayashi, and M. Iimura, J. Mater. Sci. 13, 2569–2576 (1978).
- 131 S. Yajima, Y. Hasegawa, K. Okamura, and T. Matsuzawa, Nature 273, 525–527 (1978).
- 132 R. M. Laine and F. Babonneau, Chem. Mater. 5, 260–279 (1993).
- 133 Y. Hasegawa, M. Iimura, and S. Yajima, J. Mater. Sci. 15, 720–728 (1980).
- 134 H. Ichikawa, F. Machino, S. Mitsuno, T. Ishikawa, K. Okamura, and Y. Hasegawa, J. Mater. Sci. 21, 4352–4358 (1986).
- 135 Y. Hasegawa, J. Mater. Sci. 24, 1177–1190 (1989).
- 136 T. Taki, S. Maeda, K. Okamura, M. Sato, and T. Matsuzawa, J. Mater. Sci. Lett. 6, 826–828 (1987).
- 137 Y. Hasegawa, and K. Okamura, J. Mater. Sci. 18, 3633–3648 (1983).
- 138 F. Babonneau, G. D. Soraru, and J. D. Mackenzie, J. Mater. Sci. 25, 3664–3670 (1990).
- 139 M. L. Dunham, D. L. Bailey, and R. Y. Mixer, Ind. Eng. Chem. 49, 1373–1376 (1957).
- 140 E. M. Valles and C. W. Macosko, Macromolecules 12, 673–679 (1979).
- 141 M. Heidingsfeldova, and M. Capka, J. Appl. Polym. Sci. 30, 1837–1846 (1985).
- 142 A. Grzelka, J. Chojnowski, M. Cypryk, W. Fortuniak, P. C. Hupfield, and R. G. Taylor, J. Organomet. Chem. 689, 705–713 (2004).
- 143 M. Scheffler, R. Bordia, N. Travitzky, and P. Greil, J. Eur. Ceram. Soc. 25, 175–180 (2005).
- 144 N. S. C. K. Yive, R. J. P. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux, Chem. Mater. 4, 141–146 (1992).
- 145 A. Lavedrine, D. Bahloul, P. Goursat, N. Choong Kwet Yive, R. Corriu, D. Leclerq, H. Mutin, and A. Vioux, J. Eur. Ceram. Soc. 8, 221–227 (1991).
- 146 S. Martinez-Crespiera, E. Ionescu, H. J. Kleebe, and R. Riedel, J. Eur. Ceram. Soc. 31, 913–919 (2011).
- 147 J. Bill and F. Aldinger, Adv. Mater. 7, 775 (1995).
- 148 P. Greil and M. Seibold, J. Mater. Sci. 27, 1053–1060 (1992).
- 149 K. B. Schwartz and D. J. Rowcliffe, J. Am. Ceram. Soc. 69, C106–C108 (1986).
- 150 R. Harshe, C. Balan, and R. Riedel, J. Eur. Ceram. Soc. 24, 3471–3482 (2004).
- 151 C. Linck, E. Ionescu, B. Papendorf, D. Galuskova, D. Galusek, P. Sajgalik, and R. Riedel, Int. J. Mater. Res. (formerly Z. Mater.) 103, 31–39 (2012).
- 152 S. Ishihara, H. Gu, J. Bill, F. Aldinger, and F. Wakai, J. Am. Ceram. Soc. 85, 1706–1712 (2002).
- 153 M. Esfehanian, R. Oberacker, T. Fett, and M. J. Hoffmann, J. Am. Ceram. Soc. 91, 3803–3805 (2008).
- 154 G. D. Soraru, F. Babonneau, and J. D. Mackenzie, J. Non-Cryst. Solids 106, 256–261 (1988).
- 155 M. Monthioux, A. Oberlin, and E. Bouillon, Compos. Sci. Technol. 37, 21–35 (1990).
- 156 R. J. P. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux, J. Sol-Gel Sci. Technol. 8, 327–330 (1997).
- 157 C. G. Pantano, A. K. Singh, and H. X. Zhang, J. Sol-Gel Sci. Technol. 14, 7–25 (1999).
- 158 V. Belot, R. J. P. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux, J. Non-Cryst Solids 176, 33–44 (1994).
- 159 H. Brequel, S. Enzo, S. Walter, G. D. Soraru, R. Badheka, and F. Babonneau, Mater. Sci. Forum 386–389, 359–364 (2002) .
- 160 P. Dibandjo, S. Dire, F. Babonneau, and G. D. Soraru, J. Non-Cryst. Solids 356, 132–140 (2010).
- 161 H. Zhang and C. G. Pantano, J. Am. Ceram. Soc. 73, 958–963 (1990).
- 162 G. M. Renlund, S. Prochazka, and R. H. Doremus, J. Mater. Res. 6, 2716–2722 (1991).
- 163 G. D. Soraru, R. Campostrini, S. Maurina, and F. Babonneau, J. Am. Ceram. Soc. 80, 999–1004 (1997).
- 164 G. D. Soraru, Q. Liu, L. V. Interrante, and T. Apple, Chem. Mater. 10, 4047–4054 (1998).
- 165 V. Belot, R. J. P. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux, J. Polym. Sci.: Polym. Chem. 30, 613–623 (1992).
- 166 A. D. Chomel, P. Dempsey, J. Latournerie, D. Hourlier-Bahloul, and U. A. Jayasooriya, Chem. Mater. 17, 4468–4473 (2005).
- 167 L. Bois, J. Maquet, F. Babonneau, H. Mutin, and D. Bahloul, Chem. Mater. 6, 796–802 (1994).
- 168 R. Kalfat, F. Babonneau, N. Gharbi, and H. Zarrouk, J. Mater. Chem. 6, 1673–1678 (1996).
- 169 V. Gualandris, D. Hourlier-Bahloul, and F. Babonneau, J. Sol-Gel Sci. Technol. 14, 39–48 (1999).
- 170 G. D. Soraru, L. Pederiva, J. Latournerie, and R. Raj, J. Am. Ceram. Soc. 85, 2181–2187 (2002).
- 171 G. D. Soraru, G. Dandrea, R. Campostrini, F. Babonneau, and G. Mariotto, J. Am. Ceram. Soc. 78, 379–387 (1995).
- 172 M. Narisawa, S. Watase, K. Matsukawa, T. Dohmaru, and K. Okamura, J. Chem. Soc. Jpn. 85, 724–726 (2012).
- 173 J. Bill, J. Seitz, G. Thurn, J. Durr, J. Canel, B. Z. Janos, A. Jalowiecki, D. Sauter, S. Schempp, H. P. Lamparter, J. Mayer, and F. Aldinger, Phys. Stat. Solidi A 166, 269–296 (1998).
- 174 J. Seitz, J. Bill, N. Egger, and F. Aldinger, J. Eur. Ceram. Soc. 16, 885–891 (1996).
- 175 Y. L. Li, E. Kroke, R. Riedel, C. Fasel, C. Gervais, F. Babonneau, Appl. Organomet. Chem. 15, 820–832 (2001).
- 176 R. M. Laine, F. Babonneau, K. Y. Blowhowiak, R. A. Kennish, J. A. Rahn, G. J. Exarhos, and K. Waldner, J. Am. Ceram. Soc. 78, 137–145 (1995).
- 177 Y. Iwamoto, W. Volger, E. Kroke, R. Riedel, T. Saitou, and K. Matsunaga, J. Am. Ceram. Soc. 84, 2170–2178 (2001).
- 178 G. Fritz and B. Raabe, Z. Anorg. Allg. Chem. 286, 19 (1956).
- 179 F. W. Ainger and J. M. Herbert, in P. Popper, ed., Special Ceramics, Academic Press, New York, 1960, p. 168.
- 180 P. G. Chantrell and P. Popper, in P. Popper, ed. Special Ceramics, Academic Press, New York, 1965, p. 67.
- 181 US Patent 3,853,567 (1974), W. Verbeek, Production of Shaped Articles of Homogeneous Mixtures of Silicon Carbide and Nitride. (Bayer Aktiengesellschaft, Leverkusen, Germany).
- 182 W. Verbeek and G. Winter, Ger. Offen. 2236078 (1974). Bayer Aktiengesellschaft AG, Leverkusen, Germany.
- 183 G. Winter, W. Verbeek, and M. Mansmann, Ger. Offen. 1974.
- 184 R. Riedel, A. Gurlo, and E. Ionescu, Chem. Unserer Z. 44, 208–227 (2010).
- 185 G. Mera, A. Navrotsky, S. Sen, H.-J. Kleebe, and R. Riedel, J. Mater. Chem. A 1, 3826–3836 (2013) .
- 186 A. Saha, R. Raj, and D. L. Williamson, J. Am. Ceram. Soc. 88, 232–234 (2005).
- 187 A. Saha, R. Raj, and D. L. Williamson, J. Am. Ceram. Soc. 89, 2188–2195 (2006).
- 188 M. Reinold, G. Mera, Y. Gao, M. Graczyk-Zajac, and R. Riedel, J. Power Sources, 236, 224–229 (2013).
- 189 P. Dibandjo, M. Graczyk-Zajac, R. Riedel, V. S. Pradeep, and G. D. Soraru, J. Eur. Ceram. Soc. 32, 2495–2503 (2012).
- 190 M. Graczyk-Zajac, L. Toma, C. Fasel, and R. Riedel, Solid State Ionics 225, 522–526 (2012).
- 191 J. Kaspar, M. Graczyk-Zajac, and R. Riedel, Solid State Ionics 225, 527–531 (2012).
- 192 R. Riedel, A. Kienzle, W. Dressler, L. Ruwisch, J. Bill, and F. Aldinger, Nature 382, 796–798 (1996).
- 193 Z. C. Wang, F. Aldinger, and R. Riedel, J. Am. Ceram. Soc. 84, 2179–2183 (2001).
- 194 A. Jalowiecki, J. Bill, F. Aldinger, and J. Mayer, Composites, Part A 27, 717–721 (1996).
- 195 S. J. Widgeon, S. Sen, G. Mera, E. Ionescu, R. Riedel, and A. Navrotsky, Chem. Mater. 22, 6221–6228 (2010).
- 196 T. Varga, A. Navrotsky, J. L. Moats, R. M. Morcos, F. Poli, K. Muller, A. Saha, and R. Raj, J. Am. Ceram. Soc. 90, 3213–3219 (2007).
- 197 R. M. Morcos, A. Navrotsky, T. Varga, Y. Blum, D. Ahn, F. Poli, K. Muller, and R. Raj, J. Am. Ceram. Soc. 91, 2969–2974 (2008).
- 198 R. M. Morcos, A. Navrotsky, T. Varga, D. Ahn, A. Saha, F. Poli, K. Mueller, and R. Raj, J. Am. Ceram. Soc. 91, 2391–2393 (2008).