Depolymerization
Abstract
This article provides an overview of depolymerization from a thermodynamic and kinetic perspective. Depolymerization is characterized by the scission of the main chain backbone. Three types of reactions such as random degradation, depolymerization, and weak-link degradation may occur separately or in conjunction with each other. The kinetic treatment of depolymerization processes has been described in the case of random degradation and chain depolymerization. Depolymerization is characterized by their thermodynamic and energetic features such as heat, entropy, free energy for polymerization, bond-dissociation energy, and activation energy. Current applications of depolymerization are found in various fields such as biological recycling (biorecycling), chemical recycling, agricultural uses in the natural environment, and medical uses.
Bibliography
- 1N. Grassie, in N. M. Bikales, ed., Encyclopedia of Polymer Science and Technology, 1st ed., Wiley-Interscience, New York, 1966, Vol. 4, p. 659.
- 2L. A. Wall, S. L. Madorsky, D. W. Brown, S. Straus, and R. Simha, J. Am. Chem. Soc. 76, 3430 (1954).
- 3N. Grassie, in N. M. Bikales, ed., Encyclopedia of Polymer Science and Technology, 1st ed., Wiley-Interscience, New York, 1966, Vol. 4, p. 647.
- 4L. A. Wall, SPE J. 16, 810 (1960).
- 5N. Grassie, in E. M. Fettes, ed., Chemical Reactions of Polymers, John Wiley & Sons, Inc., New York, 1964, p. 565.
- 6S. Bywater and P. E. Black, J. Phys. Chem. 69, 2967 (1965).
- 7R. Simha, L. A. Wall, and T. Bram, J. Chem. Phys. 29, 894 (1958).
- 8N. Grassie, in N. M. Bikales, ed., Encyclopedia of Polymer Science and Technology, 1st ed., Wiley-Interscience, New York, 1966, Vol. 4, p. 652.
- 9S. L. Madorsky and S. Straus, J. Res. Nat. Bur. Stand. 40, 417 (1948).
- 10N. Grassie, Chemistry of High Polymer Degradation Processes, John Wiley & Sons, Inc., New York, 1956.
- 11S. L. Madorsky, Thermal Degradation of Organic Polymers, John Wiley & Sons, Inc., New York, 1964.
- 12R. H. Boyd, in R. T. Conley, ed., Thermal Stability of Polymers, Marcel Dekker, Inc., New York, 1970, Vol. 1, Chapt. 3.
- 13L. Reich and S. S. Stivala, Elements of Polymer Degradation, McGraw-Hill, Inc., New York, 1971.
- 14 H. H. G. Jellinek, ed., Degradation and Stabilization of Polymers, Elsevier, Amsterdam, 1983, Vol. 1.
- 15 N. S. Allen, ed., Degradation and Stabilisation of Polyolefins, Applied Science Publishers, Ltd., London, 1983.
- 16W. Schnabel, Polymer Degradation, Macmillan Publishing Co., Inc., New York, 1982.
- 17G. Tasset and G. Smets, J. Polym. Sci. 12, 517 (1954).
- 18J. R. MacCallum, Makromol. Chem. 83, 129 (1965).
- 19G. G. Cameron and G. P. Kerr, Eur. Polym. J. 4, 709 (1968).
- 20G. G. Cameron and G. P. Kerr, Eur. Polym. J. 6, 423 (1970).
- 21S. S. Stivala, J. Kimura, and L. Reich, in H. H. G. Jellinek, ed., Degradation and Stabilization of Polymers, Elsevier, Amsterdam, 1983, Vol. 1, p. 43.
- 22K. H. Ebert, H. J. Ederer, and U. K. O. Schröder, Makromol. Chem. 183, 1207 (1982).
- 23W. Kuhn, Ber. Dtsch. Chem. Ges. 63, 1503 (1930).
- 24E. W. Montroll and R. Simha, J. Chem. Phys. 8, 721 (1940).
- 25R. Simha, J. Appl. Phys. 12, 569 (1941).
- 26B. J. Coyne, J. Polym. Sci., Part A-2 5, 633 (1967).
- 27S. W. Lee, J. Polym. Sci., Part A-2 7, 77 (1969).
- 28R. Simha, L. A. Wall, and P. J. Blatz, J. Polym. Sci. 5, 615 (1950).
- 29R. Simha and L. A. Wall, J. Phys. Chem. 56, 707 (1952).
- 30R. H. Boyd, J. Chem. Phys. 31, 321 (1959); R. H. Boyd and T. P. Lin, J. Chem. Phys. 31, 773–778 (1959).
- 31R. H. Boyd, J. Polym. Sci., Part A-1 5, 1573 (1967).
- 32J. Atkinson and J. R. MacCallum, J. Macromol. Sci. Chem. 5, 945 (1971).
- 33G. G. Cameron and J. R. MacCallum, J. Macromol. Sci. Rev., Macromol. Chem. 1, 327 (1967).
- 34J. R. MacCallum, Eur. Polym. J. 7, 1237 (1971).
- 35J. Atkinson and J. R. MacCallum, J. Polym. Sci., Part A-2 10, 811 (1972).
- 36H. L. Friedman, J. Polym. Sci. 45, 119 (1960).
- 37M. Gordon, Trans. Faraday Soc. 53, 321 (1959).
- 38A. Barlow, R. S. Lehrle, J. C. Robb, and D. Sunderland, Polymer 8 (523), 537 (1967); R. S. Lehrle and J. C. Robb, J. Gas Chromatogr. 5, 89 (1967).
- 39R. S. Dainton and K. J. Ivin, Nat. London 162, 705 (1948) Q. Rev. Chem. Soc. 12, 61 (1958).
- 40K. J. Ivin, in A. D. Jenkins and A. Ledwith, eds, Reactivity, Mechanism and Structure in Polymer Chemistry, John Wiley & Sons, Inc., New York, 1973, p. 514.
- 41H. Sawada, Thermodynamics of Polymerization, Marcel Dekker, Inc., New York, 1976, p. 1.
- 42H. Hüssi, Chimia 20, 379 (1966).
- 43S. Bywater, Makromol. Chem. 52, 120 (1960).
- 44M. Szwarc, Living Polymers and Mechanisms of Anionic Polymerization, Vol. 49 of Advances in Polymer Science, Spring-Verlag New York, Inc., New York, 1983, p. 22.
- 45H. Sawada, Thermodynamics of Polymerization, Marcel Dekker, Inc., New York, 1976, pp. 20–31.
- 46R. M. Joshi and B. J. Zwolinski, in G. E. Ham, ed., Vinyl Polymerization, Marcel Dekker, Inc., New York, 1967, Vol. 1, p. Pt. 1, Chapt. 8.
- 47L. S. Kariyawasam, J. Rolsma, and Y. Yang, Angew. Chem. Int. Ed. 62, e202303039 (2023), DOI: 10.1002/anie.202303039.
- 48H. Sawada, Thermodynamics of Polymerization, Marcel Dekker, Inc., New York, 1976, p. 131.
- 49I. J. Goldfarb, R. J. McHenry, and E. C. Penski, J. Polym. Sci. 58, 1283 (1962).
- 50D. W. van Krevelen, Principles of Polymers, Correlation with Chemical Structure, Elsevier, Amsterdam, 1976, pp. 459–460.
- 51J. A. Kerr, Chem. Rev. 66, 465 (1966).
- 52T. Kagiya, K. Takemoto, and M. Hagiwara, J. Appl. Polym. Sci.: Appl. Polym. Symp. 35, 95 (1979).
- 53V. V. Korshak, The Chemical Structure and Thermal Characteristics of Polymers, Israel Programme for Scientific Translations, Ltd., Jerusalem, 1971, p. 255.
- 54H. Sawada, Thermodynamics of Polymerization, Marcel Dekker, Inc., New York, 1976, pp. 314–320.
- 55R. Simha, J. Polym. Sci. 9, 465 (1952).
- 56D. W. Brown and L. A. Wall, J. Phys. Chem. 62, 848 (1958).
- 57S. Bywater, J. Phys. Chem. 57, 879 (1953).
- 58J. Atkinson and J. R. MacCallum, Eur. Polym. J. 8, 809 (1972).
- 59K. J. Ivin, Trans. Faraday Soc. 51, 1273 (1955).
- 60N. Grassie and J. R. MacCallum, J. Polym. Sci. B 1, 551 (1963).
- 61F. R. E. J. Cowley and H. W. Melville, Proc. R. Soc. London A 210, 461 (1951).
- 62A. Von Brockhaus and E. Jenkel, Makromol. Chem. 18/19, 262 (1956).
10.1002/macp.1956.020180124 Google Scholar
- 63H. Sawada, Thermodynamics of Polymerization, Marcel Dekker, Inc., New York, 1976, p. 28.
- 64L. A. Wall, SPE J. 16, 1031 (1960).
- 65L. A. Wall, SPE J. 16, 1033 (1960).
- 66L. A. Wall, SPE J. 16, 1034 (1960).
- 67T. Kagiya, K. Takemoto, and M. Hagiwara, J. Appl. Polym. Sci.: Polym. Symp. 35, 104 (1979).
- 68M. G. Evans and M. Polanyi, Trans. Faraday Soc. 34, 11 (1938).
- 69E. S. Stevens, Green Plastics, Princeton University Press, Princeton, NJ, Oxford, 2002.
10.1515/9780691214177 Google Scholar
- 70F. D. Innocenti, in E. Chiellini and R. Solaro, eds, Biodegradable Polymers and Plastics, Kluwer Academic/Plenum Publications, New York, 2002, p. 33.
- 71H. Sawada, ISO Focus 2 (6), 12 (2005).
- 72G. Scott, in E. Chiellini and R. Solaro, eds, Biodegradable Polymers and Plastics, Kluwer Academic/Plenum Publications, New York, 2002, p. 3.
- 73A. F. Azhar and A. M. Usmani, in S. H. Hamid, M. B. Amin, and A. G. Maadhah, eds, Handbook of Polymer Degradation, Marcel, Dekker, Inc., New York, 1992, p. 575.
- 74D. F. Williams, in G. Allen and J. C. Bevington, eds, Comprehensive Polymer Science, Pergamon Press, Oxford, 1989, Vol. 6, p. 607.
- 75G. Scott, Polym. Degrad. Stabil. 68, 3 (2000).
- 76A. Azapagic, A. Emsley, and I. Hamerton, in I. Hamerton, ed., Polymers, the Environment and Sustainable Development, Wiley, England, 2003, p. 9.
10.1002/0470865172 Google Scholar
- 77J. F. Highmoore, L. S. Kariyawasam, S. R. Trenor, and Y. Yang, Green Chem. 26, 2384–2420 (2024).
- 78H. S. Wang, N. P. Truong, Z. Pei, M. L. Coote, and A. Anastasaki, J. Am. Chem. Soc. 144 (10), 4678–4684 (2022); J. B. Young, R. W. Hughes, A. M. Tamura, L. S. Bailey, K. A. Stewart, and B. S. Sumerlin, Chem, 9(9), 2669–2682 (2023); F. De Luca Bossa, G. Yilmaz, and K. Matyjaszewski, ACS Macro Lett., 12(8), 1173–1178 (2023).
- 79R. M. O'Dea, M. Nandi, G. Kroll, J. R. Arnold, L. T. J. Korley, and T. H. I. I. I. Epps, JACS Au 4 (4), 1471–1479 (2024).
- 80Z. Lei, H. Chen, C. Luo, Y. Rong, Y. Hu, Y. Jin, R. Long, K. Yu, and W. Zhang, Nat. Chem. 14 (12), 1399–1404 (2022), DOI: 10.1038/s41557-022-01046-4.
- 81P. R. Christensen, A. M. Scheuermann, K. E. Loeffler, and B. A. Helms, Nat. Chem. 11 (5), 442–448 (2019); Z. Hu, F. Hu, L. Deng, Y. Yang, Q. Xie, Z. Gao, C. Pan, Y. Jin, J. Tang, and G. Yu, Angew. Chem. Int. Ed., 62(34), e202306039 (2023); Y. Ma, X. Jiang, Z. Shi, J. A. Berrocal, and C. Weder, Angew. Chem. Int. Ed., 62(36), e202306188 (2023).
- 82J.-B. Zhu, E. M. Watson, J. Tang, and E. Y.-X. Chen, Science 360, 398–403 (2018).
- 83B. A. Abel, R. L. Snyder, and G. W. Coates, Science 373, 783–789 (2021); X.-L. Li, R. W. Clarke, H.-Y. An, R. R. Gowda, J.-Y. Jiang, T.-Q. Xu, and E. Y.-X. Chen, Angew. Chem. Int. Ed., e202303791 (2023); C. F. Gallin, W. Lee, and J. A. Byers, Angew. Chem., 135, e202303762 (2023).
- 84H. Liu, A. Z. Nelson, Y. Ren, K. Yang, R. H. Ewoldt, and J. S. Moore, ACS Macro Lett. 7, 933–937 (2018); B. M. Coia, S. E. Werner, and J. G. Kennemur, J. Polym. Sci., 60, 3391–3403 (2022); J. Zhou, D. Sathe, and J. Wang, JACS, 144, 928 (2022).
- 85J. Huang, P. Olsén, E. Svensson Grape, A. K. Inge, and K. Odelius, Macromolecules 55, 608–614 (2022); A. M. Johnson, K. E. L. Husted, J. A. Johnson, and L. J. Kilgallon, Chem. Commun., 58, 8496–8499 (2022), DOI: 10.1039/d2cc02718f; L. S. Kariyawasam, J. Rolsma, and Y. Yang, Angew. Chem. Int. Ed., 62, e202305900 (2023), DOI: 10.1002/anie.202303039.
This article is based on the article ‘Depolymerization’ by H. Sawada, published in EPST (online), posting date: March 15, 2007, DOI 10.1002/0471440264.pst552.