Polysulfones
Abstract
Polysulfones are an important class of high performance commercial polymers with high heat tolerance, excellent mechanical properties, and good resistance to chemicals and most radiation sources. Key applications include membranes for hemodialysis and water purification; medical devices, including cases and trays; food contact applications; plumbing; and electronics such as mobile devices. These polymers are generally prepared through a condensation reaction between 4,4′-dichlorodiphenylsulfone (DCDPS) and an aromatic diol: bisphenol A (Bis A) in the case of polysulfone, bisphenol S (Bis S) for polyethersulfone, and biphenol for polyphenylsulfone. Their thermal stability imparts processability through traditional molding and extrusion operations. Polysulfones can be modified by blending with polymers and other additives commonly used in the plastics industry. Commercial grades exist with glass and carbon fibers to improve mechanical properties; with additives to impart improved thermo-oxidative behavior, photochemical resistance, or processability; with pigments and dyes to make a myriad of transparent and opaque colors; and polymer or monomer derived from postconsumer materials for improved sustainability. A large variety of novel polysulfones have been synthesized and proposed for various membrane applications. Most notable among these are variants with sulfonate pendant groups introduced either on one of the monomers used for polymerization or using a variety of “post-sulfonation” techniques. Polysulfone chemistry offers a platform to address some of the key challenges facing humanity today.
Bibliography
- 1E. Wellisch, E. Gipstein, and O. J. Sweeting, J. Appl. Polym. Sci. 8, 1623–1631 (1964) DOI: 10.1002/app.1964.070080412.
- 2U.S. Pat. 4,108,837 (1978), R. N. Johnson and A. G. Farnham (to Union Carbide Corporation).
- 3R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale, and C. N. Merriam, J. polym. Sci. Part A-1 5, 2375–2398 (1967) DOI: 10.1002/POL.1967.150050916.
- 4J. B. Rose, Polymer 15, 456–465 (1974) DOI: 10.1016/0032-3861(74)90111-6.
- 5 U.S. Pat. 3,332,909A (1967), R. N. Johnson and A. G. Farnham (to Union Carbide Corporation).
- 6 U.S. Pat. 5,239,043A (1993), S. Savariar (to Amoco Corporation).
- 7 U.S. Pat. 5,235,019A (1993), S. Savariar (to Amoco Corporation).
- 8 U.S. Pat. 4,008,203A (1977), M. E. B. Jones (to Imperial Chemical Industries Limited).
- 9I. Colon and D. R. Kelsey, J. Org. Chem. 51, 2627–2637 (1986) DOI: 10.1021/jo00364a002.
- 10G. T. Kwiatkowski, I. Colon, M. J. El-Hibri, and M. Matzner, Makromol. Chem. Macromol. Symp. 54-55, 199–224 (1992) DOI: 10.1002/masy.19920540118.
10.1002/masy.19920540118 Google Scholar
- 11V. Percec and H. Nava, J. Polym. Sci. A Polym. Chem. 26, 783–805 (1988) DOI: 10.1002/pola.1988.080260309.
- 12 U.S. Pat. 2015,0,065,677,A1 (2015), F. A. el-Toufalli, A. Stammer, S. Gramlich, and A. Ulzhöfer (to BASF SE).
- 13 WO 2023,242,241,A1 (2023), A. Bhatnagar, G. Behera, S. Chatterjee, G. Goschy, K. Nair, H. Patel, V. Gopalakrishnan, and T. T. Moore (to Solvay Specialty Polymers).
- 14Y. Minami, Y. Inagaki, T. Tsuyuki, K. Sato, and Y. Nakajima, JACS Au. 3, 2323–2332 (2023) DOI: 10.1021/jacsau.3c00357.
- 15A. Noshay and L. M. Robeson, J. Appl. Polym. Sci. 20, 1885–1903 (1976) DOI: 10.1002/app.1976.070200717.
- 16M. A. Hickner, H. Ghassemi, Y.-S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev. 104, 4587–4612 (2004) DOI: 10.1021/cr020711a.
- 17R. Guo and J. E. McGrath, Polymer Science: A Comprehensive Reference, Volume 5: Polycondensation, Elsevier Science, 2012, pp. 377–430.
10.1016/B978-0-444-53349-4.00153-9 Google Scholar
- 18L. Breitbach, E. Hinke, and E. Staude, Die Angewandte Makromolekulare Chemie 184, 183–196 (1991) DOI: 10.1002/apmc.1991.051840116.
- 19M. D. Guiver, P. Black, C. M. Tam, and Y. Deslandes, J. Appl. Polym. Sci. 48, 1597–1606 (1993) DOI: 10.1002/app.1993.070480912.
- 20R. J. Cotter, Engineering Plastics: A Handbook of Polyarylethers, Gordon and Breach Publishers, Postfach, Switzerland, 1995.
- 21T. E. Attwood, M. B. Cinderey, and J. B. Rose, Polymer 34, 1322–1324 (1993) DOI: 10.1016/0032-3861(93)90794-B.
- 22J. Dumais, A. Cholli, L. Jelinski, J. L. Hedrick, and J. E. McGrath, Macromolecules 19, 1884–1889 (1986) DOI: 10.1021/ma00161a017.
- 23L. M. Robeson, A. G. Farnham, and J. E. McGrath, Appl. Polym. Symp. 26, 373–385 (1975).
- 24L. M. Robeson and S. T. Crisafulli, J. Appl. Polym. Sci. 28, 2925–2936 (1983) DOI: 10.1002/app.1983.070280920.
- 25A. Davis, M. Gleaves, J. Golden, and M. Huglin, Die Makromolekulare Chemie 129, 63–72 (1969) DOI: 10.1002/macp.1969.021290106.
- 26J. Brown and J. H. O'Donnell, J. Polym. Sci. C Pol. Lett. 8, 121–126 (1970) DOI: 10.1002/pol.1970/110080212.
- 27A. R. Lyons, M. C. Symons, and J. K. Yandell, Die Makromol. Chem. 157, 103–109 (1972) DOI: 10.1002/macp.1972.021570109.
- 28D. J. Walsh, S. Rostami, and V. B. Singh, Die Makromol. Chem. 186, 145–158 (1985) DOI: 10.1002/macp.1985.021860115.
- 29H. Nakamura, J. Maruta, T. Ohnaga, and T. Inoue, Polymer 31, 303–307 (1990) DOI: 10.1016/0032-3861(90)90123-G.
- 30 U.S. Pat. 5,191,035A (1993), J. E. Harris, J. L. Melquist, and J. el-Hibri (to Amoco Corporation).
- 31 U.S. Pat. 5 086 130A, (1992), B. L. Dickinson, J. El-Hibri, and M. E. Sauers (to Amoco Corporation).
- 32 U.S. Pat. 4,520,067A (1985), J. E. Harris and L. M. Robeson (to Union Carbide Corporation).
- 33 U.S. Pat. 6,075,100A, (2000), J. El-Hibri (to BP Amoco Corporation).
- 34T. Callaghan and D. R. Paul, J. Polym. Sci. B Polym. Phys. 32, 1847–1880 (1994) DOI: 10.1002/polb.1994.090321104.
- 35M. F. Cheung, A. Golovoy, H. K. Plummer, and H. van Oene, Polymer 31, 2299–2306 (1990) DOI: 10.1016/0032-3861(90)90316-Q.
- 36S. M. Hong, B. C. Kim, K. U. Kim, and I. J. Chung, Polym. J. 23, 1347–1357 (1991) DOI: 10.1295/POLYMJ.23.1347.
- 37 U.S. Pat. 4,713,426A (1987), L. M. Robeson and J. E. Harris (to Amoco Corporation).
- 38 U.S. Pat. 5,164,466A (1992), B. L. dickinson, J. El-Hibri, and M. E. Sauers (to Amoco Corporation).
- 39 U.S. Pat. 5,037,902A (1991), G. T. Brooks and J. E. Harris (to Amoco Corporation).
- 40 U.S. Pat. 4,804,723A (1989), L. M. Robeson and J. E. Harris (to Amoco Corporation).
- 41A. Erb and D. R. Paul, J. Membr. Sci. 8, 11–22 (1981) DOI: 10.1016/S0376-7388(00)82135-3.
- 42J. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, (1991) DOI: 10.1016/0032-3861(91)90508G.
10.1016/0032?3861(91)90508G Google Scholar
- 43J. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, (1991) DOI: 10.1016/0032-3861(91)90343-H.
10.1016/0032?3861(91)90343?H Google Scholar
- 44W. W. Y. Lau, M. D. Guiver, and T. Matsuura, J. Membr. Sci. 1991, 219–227 (1991) DOI: 10.1016/S0376-7388(00)81185-0.
10.1016/S0376-7388(00)81185-0 Google Scholar
- 45J. Wijmans, J. Kant, M. Mulder, and C. A. Smolders, Polymer 26, 1539–1545 (1985) DOI: 10.1016/0032-3861(85)90090-4.
- 46I. Cabasso, E. Klein, and J. K. Smith, J. Appl. Polym. Sci. 20, 2377–2394 (1976) DOI: 10.1002/app.1976.070200908.
- 47R. J. Peterson, J. Membr. Sci. 83, 81–150 (1993) DOI: 10.1016/0376-7388(93)80014-O.
10.1016/0376-7388(93)80014-O Google Scholar
- 48S. K. Bowry, E. Gatti, and J. Vienken, Contrib. Nephrol. 173, 110–118 (2011).
- 49J. Vienken, Nieren- und Hochdruckkrankheiten 32, 263–273 (2003).
- 50A. K. Cheung and J. K. Leypoldt, Semin. Nephrol. 17, 196–213 (1997).
- 51J. Hodgkin, G. Simon, and R. Varley, Polym. Adv. Technol. 9, 3–10 (1998) DOI: 10.1002/(SICI)1099-1581(199801)9:1<3::AID-PAT727>3.0.CO;2-I.
- 52A. J. MacKinnon, S. D. Jenkins, P. T. McGrail, and R. A. Pethrick, J. Appl. Polym. Sci. 58, 2345–2355 (1995) DOI: 10.1002/app.1995.070581302.
- 53C. C. Bucknall and I. K. Partridge, Brit. Polym. J. 15, 71–75 (1983) DOI: 10.1002/pi.4980150117.
- 54J. C. Hedrick, N. M. Patel, and J. E. McGrath, Toughened Plastics 1: Science and Engineering ACS, Washington DC, 1993.
- 55T. Inoue, Prog. Polym. Sci. 20, 119–153 (1995) DOI: 10.1016/0079-6700(94)00032-W.
- 56R. J. Williams, B. A. Rozenberg, and J.-P. Pascault, Polymer Analysis Polymer Physics, Springer, Berlin, 1997, pp. 95–156.
10.1007/3-540-61218-1_7 Google Scholar
- 57J.-P. Pascault and R. J. Williams, Polymer Blends: Formulation, Wiley, New York, 2000, pp. 379–415.
- 58A. Yee, J. Du, and M. Thouless, Polymer Blends: Formulation, Wiley, New York, 2000, pp. 225–267.
- 59S. Zheng, Epoxy Polymers: New Materials and Innovations, Wiley, Weinheim, Germany, 2010, pp. 81–108.
- 60Y. Rosetti, P. Alcouffe, J.-P. Pascault, J.-F. Gerard, and F. Lortie, Materials 11, 1920 (2018) DOI: 10.3390/ma11101960.
- 61B. S. Kim, T. Chiba, and T. Inoue, Polymer 36, 43–47 (1995) DOI: 10.1016/0032-3861(95)90673-P.
- 62T. H. Yoon, D. B. Priddy Jr., G. D. Lyle, and J. E. McGrath, Macromol. Symp. 98, 673–686 (1995) DOI: 10.1002/masy.19950980158.
- 63J. Zhang, Q. Guo, and B. Fox, J. Appl. Polym. Sci. 113, 485–491 (2009) DOI: 10.1002/app.30132.
- 64S. Agius, K. Magniez, and B. Fox, Compos. Struct. 92, 2119–2127 (2010) DOI: 10.1016/j.compstruct.2009.09.045.
10.1016/j.compstruct.2009.09.045 Google Scholar
- 65G. Li, P. Li, Y. Yu, X. Kjia, S. Zhang, X. Yang, and S. Ryu, Mater. Lett. 62, 511–514 (2008) DOI: 10.1016/j.matlet.2007.05.080.
- 66Y. Zhang, W. Shi, F. Chen, and C. C. Han, Macromolecules 44, 7465–7472 (2011) DOI: 10.1021/ma201318g.
This article is based on the article “Polysulfones” by M. J. El-Hibiri and S. A. Weinberg, published in EPST (online), posting date: October 22, 2001, DOI 10.1002/0471440264.pst291.