Polyhydroxyalkanoates: Microbial Synthesis and Applications
Guo-Qiang Chen
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorXiaoran Jiang
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorHui Yao
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorLi Lv
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorTian Li
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorXiangbin Chen
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorGuo-Qiang Chen
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorXiaoran Jiang
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorHui Yao
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorLi Lv
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorTian Li
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorXiangbin Chen
Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorAbstract
Polyhydroxyalkanoates (PHAs), an increasingly diverse biopolyesters, have been used for various applications including high and low value ones. High value applications include medical implants, drug delivery, and smart materials, whereas low value applications include environmentally friendly packaging materials, biofuels, and matrices for sustainable fertilizer and/or pesticide release. Various technologies have been utilized to tailor PHAs with specific structures and properties. Cost-effective seawater-based technology allows PHA production to be conducted in unsterile and continuous conditions using seawater instead of fresh water, which leads to fresh water and energy saving. All these advances have reduced the PHAs production cost significantly. Future PHAs are expected to be more competitive economically and provide additional functionalities for high value applications.
Bibliography
- 1 D. Kadouri, E. Jurkevitch, Y. Okon, and S. Castro-Sowinski, Crit. Rev. Microbiol. 31, 1–13 (2005).
- 2 N. I. López, M. E. Floccari, A. Steinbüchel, A. F. Garcia, and B. S. Méndez, FEMS Microbiol. Ecol. 16, 95–102 (1995).
- 3 Q. Wu, S. Q. Sun, P. H. F. Yu, A. X. Z. Chen, and G. Q. Chen Acta Polym. Sin. 6, 751–756 (2000).
- 4 G. Q. Chen, I. Hajnal, Y. M. Ma, H. Yao, and J. W. Ye, Trends Biotechnol. 33, 565–574 (2015).
- 5 Y. Poirier, D. E. Dennis, K. Klomparens, and C. Somerville, Science 256, 520–523 (1992).
- 6 D. C. Meng, Y. M. Ma, H. Yao, J. C. Chen, Q. Wu, and G. Q. Chen, Curr. Opin. Biotechnol. 29, 24–33 (2014).
- 7 J. Kim, Y. J. Kim, S. Y. Choi, S. Y. Lee and K. J. Kim, Biotechnol. J. 12, 1 (2017).
- 8 G. Q. Chen and I. Hajnal, Trends Biotechnol. 33, 559–564 (2015).
- 9 A. Steinbüchel and H. E. Valentin, FEMS Microbiol. Lett. 128, 219–228 (1995).
- 10 G. Q. Chen, Chem. Soc. Rev. 38, 2434–2446 (2009).
- 11 G. Q. Chen, X. R. Jiang, Y. Y. Guo, Synth. Syst. Biotechnol. 1, 236–242 (2016).
- 12 H. Chung, J. E. Yang, J. Y. Ha, T. U. Chae, J. H. Shin, M. Gustavsson, and S. Y. Lee, Curr. Opin. Biotechnol. 36, 73–84 (2015).
- 13 E. Volodina, M. Raberg, and A. Steinbüchel, Crit. Rev. Biotechnol. 36, 978–991 (2016).
- 14 S. J. Li, L. W. Cai, P. Wu, G. D. Zeng, J. C. Chen, Q. Wu, and G. Q. Chen, Biomacromolecules 15, 2310–2319 (2014).
- 15 Y. M. Ma, H. Yao, D. X. Wei, L. P. Wu, and G. Q. Chen, Biomacromolecules 17, 2680–2690 (2016).
- 16 H. Yao, D. X. Wei, Y. M. Ma, L. W. Cai, L. Tao, L. Liu, L. O. Wu, and G. Q. Chen, Polym. Chem. 7, 5957–5965 (2016).
- 17 Z. B. Li and X. J. Loh, Chem. Soc. Rev. 44, 2865–2879 (2015).
- 18 S. J. Park, T. W. Kim, M. K. Kim, S. Y. Lee, and L. C. Lim, Biotechnol. Adv. 30, 1196–1206 (2012).
- 19 D. C. Meng, Y. Wang, R. Shen, J. C. Chen, Q. Wu, and G. Q. Chen, Metab. Eng. 29, 189–195 (2015).
- 20 Z. J. Li, Z. Y. Shi, J. Jian, Y. Y. Guo, Q Wu, and G. Q. Chen, Metab. Eng. 12, 352–359 (2010).
- 21 J. Yin, X. Z. Fu, Q. Wu, J. C. Chen, and G. Q. Chen. Appl. Microbiol. Biotechnol. 98, 8987–8997 (2014).
- 22 J. E. Yang, Y. J. Choi, S. J. Lee, K. H. Kang, H. Lee, Y. H. Oh, S. H. Lee, S. J. Park, and S. Y. Lee. Appl. Microbiol. Biotechnol. 98, 95–104 (2014).
- 23 Q. Wang, X. L. Liu, and Q. S. Qi, Appl. Microbiol. Biotechnol. 98, 3923–3931 (2014).
- 24 Q. Wang, Y. Q. Luan, X. L. Cheng, Q. Q. Zhuang, and Q. S. Qi, Appl. Microbiol. Biotechnol. 99, 2593–2602 (2015).
- 25 Q. Q. Zhuang, Q. Wang, Q. F. Liang, and Q. S. Qi, Metab. Eng. 24, 78–86 (2014).
- 26 Q. Wang, Q. Q. Zhuang, Q. F. Liang, and Q. S. Qi, Appl. Microbiol. Biotechnol. 97, 3301–3307 (2013).
- 27 A. L. Chung, H. L. Jin, L. J. Huang, H. M. Ye, J. C. Chen, Q. Wu, and G. Q. Chen, Biomacromolecules 12, 3559–3566 (2011).
- 28 L. Tripathi, L. P. Wu, and G. Q. Chen, Microb. Cell Fact. 11, 44 (2012).
- 29 L. Lv, Y. L. Ren, J. C. Chen, Q. Wu, and G. Q. Chen, Metab. Eng. 29, 160–168 (2015).
- 30 D. Elhadi, L. Lv, X. R. Jiang, H. Wu, and G. Q. Chen, Metab. Eng. 38, 358–369 (2016).
- 31 X. J. Zhang, R. C. Luo, Z. Wang, Y. Deng, and G. Q. Chen, Biomacromolecules 10, 707–711 (2009).
- 32 L. Y. Sui, G. N. Ma, W. L. Lu, Y. G. Deng, P. Bossier, and P. De Schryver, Aquac. Res. 47, 3644–3652 (2016).
- 33 Q. Wu, Y. Wang, and G. Q. Chen, Artif. Cells, Blood Substit. Biotechnol. 8, 1–22 (2009).
- 34 R. Nigmatullin, P. Thomas, B. Lukasiewicz, H. Puthussery, and I. Roy, J. Chem. Technol. Biotechnol. 90, 1209–1221 (2015).
- 35 N. Dinjaski and A. Prieto, Nanomed.-Nanotechnol. Biol. Med. 11, 885–899 (2015).
- 36 G. Q. Chen and Q. Wu, Biomaterials 26, 6565–6578 (2005)
- 37 G. Q. Chen and Q. Wu, Appl. Microbiol. Biotechnol. 67, 592–599 (2005).
- 38 X. H. Zou, H. M. Li, S. Wang, M. Leski, Y. C. Yao, X. D. Yang, Q. J. Huang, and G. Q. Chen, Biomaterials 30, 1532–1541 (2009).
- 39 Y. Zhao, B. Zou, Z. Y. Shi, G. Q. Chen, and Q. Wu. Biomaterials 28, 3063–3073 (2007).
- 40 Q. Cao, J. Y. Zhang, H. T. Liu, Q. Wu, J. C. Chen, and G. Q. Chen, Biomaterials 35, 8273–8283 (2014).
- 41 J. Y. Zhang, Q. Cao, S. W. Li, X. Y. Lu, Y. X. Zhao, J. S. Guan, Q. Wu, J. C. Chen, and G. Q. Chen, Biomaterials 34, 7552–7562 (2013).
- 42 X. R. Jiang, H. Wang, R. Shen, and G. Q. Chen, Metab. Eng. 29, 227–237 (2015).
- 43 X. R. Jiang and G. Q. Chen, Biotechnol. Adv. 34, 435–440 (2016).
- 44 D. Elhadi, L. Lv, X. R. Jiang, H. Wu, and G. Q. Chen, Metab. Eng. 38, 358–369 (2016).
- 45 D. Tan, Y. S. Xue, Gulsimay, and G. Q. Chen, Bioresource Technol. 102, 8130–8136 (2011).
- 46 D. Tan, Q. Wu, J. C. Chen, and G. Q. Chen, Metab. Eng. 26, 34–47 (2014).
- 47 T. Li, Y. Y. Guo, G. Q. Qiao, Q. Wu, and G. Q. Chen, ACS Syn. Biol. 5, 1264–1275 (2016).
- 48 Ikeda, M., Appl. Microbiol. Biotechnol. 69, 615–626 (2006).
- 49 Q. F. Liang and Q. S. Qi, Biotechnol. Adv. 32, 1328–1335 (2014).
- 50 P. Gu, J. Kang, F. Yang, Q. Wang, Q. F. Liang, and Q. S. Qi, Appl. Microbiol. Biotechnol. 97, 4121–4127 (2013).
- 51 Z. Kang, C. Gao, Q. Wang, H. Liu, and Q. S. Qi, Bioresource Technol. 101, 7675–7678 (2010).