Inorganic Polymers (Geopolymers)
Kenneth J. D. MacKenzie
MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
Search for more papers by this authorKenneth J. D. MacKenzie
MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
Search for more papers by this authorAbstract
Conventional inorganic polymers, otherwise known as geopolymers, are aluminosilicates with the desirable properties of ceramics (durability, strength) but which harden at ambient temperatures without the need for processing at high temperatures. They are commonly formed by the action of alkalis or phosphoric acid on aluminosilicate minerals such as dehydroxylated clays and consist of randomly arranged three-dimensional assemblages of silicate and aluminate units into an X-ray amorphous structure. The presence of charge-balancing ions such as Na+ or K+ within this structure gives them useful ion-exchange properties similar to zeolites. Analogous inorganic polymers are known in which the silicate is partially replaced by germinate units, and the aluminate units are replaced by gallate, phosphate, or borate units, giving a range of materials with a variety of properties and potential applications. The physical properties of the inorganic polymers can be manipulated by the introduction of fibers, whereas their chemistry allows the introduction of bone-forming elements, drugs and carbon nanotubes, providing them with porosity, bioactivity, or electronic functionality. Inorganic polymers with catalytic, photocatalytic, and fluorescent functionality can also be produced. This article covers the synthesis and structure of clay-based inorganic polymers and discusses a number of their more specialized applications. Although inorganic polymers are a subclass of alkali-activated materials that can also be formed by a range of materials other than dehydroxylated clays (fly ash, volcanic ash, blast furnace slag), geopolymers formed from these materials are outside the scope of this article, and are not discussed here.
Suggestions for further reading
Although this article is solely concerned with clay-based inorganic polymers, there is a great deal of literature on inorganic polymers (geopolymers) based on fly ash, blast furnace slag, volcanic ash, red mud ,and mixtures of these, mainly for use as construction materials. Comprehensive treatments may be found in the following textbooks:
J. Davidovits, Geopolymer Chemistry and Applications, 4th Ed, Institute Geopolymere, Saint Quentin, France, 2015.
J. L. Provis and J. S. J van Deventer, eds., Geopolymers Structure, Processing, Properties and Industrial Applications, Woodhead Publishing, Cambridge, UK, 2009.
F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasirt, eds., Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing, Cambridge, UK, 2015.
Additional information about chemical and structural aspects of clay-based inorganic polymers (geopolymers) is available in a review by
L. Yun-Ming, H. Cheng-Yong, M. M. Al Bakri, and K. Hussin, Prog. Mater. Sci. 83, 595 (2016).
Cited Publications
- 1 US Pat. 900, 939 (1908), H. Kuhl.
- 2 A. O. Purdon, J. Soc. Chem. Ind. 59, 191 (1940).
- 3
F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasirt, eds., Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, Cambridge
2015.
10.1533/9781782422884.1 Google Scholar
- 4 US Pat. 4, 349, 386 (1982), J. Davidovits.
- 5 J. Davidovits, J. Thermal Anal. 37, 1633 (1991)
- 6 R. A. Fletcher, K. J. D. MacKenzie, C. L. Nicholson, and S. Shimada, J. Eur. Ceram. Soc. 25, 1471 (2005)
- 7 K. J. D. MacKenzie, D. R. M. Brew, R. A. Fletcher, C. L. Nicholson, R. Vagana, and M. Schmücker, in Proceedings of World Geopolymers Conference., St. Quentin, Paris, 2005, p. 41.
- 8 D. Cao, D. Su, B. Lu, and Y. Yang, J. Chin. Ceram. Soc. 33, 1385 (2005).
- 9 C. L. Nicholson, B. J. Murray, R. A. Fletcher, D. R. M. Brew, K. J. D. MacKenzie, and M. Schmücker. Proc. World Geopol. Conf., St. Quentin, Paris, 31 (2005).
- 10 A. T. Durant, K. J. D. MacKenzie, and H. Maekawa, J. Chem. Soc., Dalton Trans. 40, 4865 (2011).
- 11 A. T. Durant and K. J. D. MacKenzie, Mater. Lett. 65, 2086 (2011).
- 12 V. F. F. Barbosa, K. J. D. MacKenzie, and C. Thaumaturgo, Int. J. Inorg. Mater. 2, 309 (2000).
- 13 M. R. Rowles, J. V. Hanna, K. J. Pike, M. E. Smith, and B. H. O'Connor, Appl. Magn. Reson. 32, 663 (2007)
- 14 S. J. O'Connor, K. J. D. MacKenzie, M. E. Smith, and J. V. Hanna, J. Mater. Chem. 20, 10234 (2010).
- 15 J. L. Provis, G. C. Lukey, and J. S. J. van Deventer, Chem. Mater. 17, 3075 (2005).
- 16 L. G. Berg, B. A. Demidenko, V. A. Remiznikova, and M. S. Nizamov, Stroit Mater. 10, 22 (1970).
- 17 J. L. Provis and J. S. J. van Deventer, Chem. Eng. Sci. 62, 2318 (2007).
- 18 A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, Micropororous Mesopororous Mater. 91, 111 (2006).
- 19 B. Zhang, K. J. D. MacKenzie, and I. W. M. Brown, J. Mater. Sci. 44, 4668 (2009).
- 20 K. Komnitsas and D. Zaharaki, Miner. Eng. 20, 1261 (2007).
- 21 H. Xu and J. S. J. van Deventer, Int. J. Miner. Proc. 59, 247 (2000).
- 22 J. W. Phair and J. S. J. van Deventer, Miner. Eng. 14, 289 (2001).
- 23 P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer, J. Mater. Sci. 42, 2917 (2007).
- 24 W. Lowenstein, Am. Miner. 39, 92 (1954).
- 25 F. G. M. Aredes, T. M. B. Campos, J. P. B. Machado, K. K. Sakane, G. P. Thim, and D. D. Brunelli, Ceram. Int. 41, 7302 (2015).
- 26 M. Ghanbari, A. M. Hadian, A. A. Nourbakhsh, and K. J. D. Mackenzie, Ceram. Int. 43, 324 (2017). doi: 10.1016/jceramint.2016.09.159
- 27 K. J. D. MacKenzie and M. E. Smith, Multinuclear Solid State NMR of Inorganic Materials, Pergamon Materials Series Vol. 6, Pergamon/Elsevier, Oxford, UK, 2002, p. 310.
- 28 K. J. D. MacKenzie, D. R. M. Brew, R. A. Fletcher, and R. Vagana, J. Mater. Sci. 42, 4667 (2007).
- 29 A. T. Pinto and E. Viera, Mater. Sci. Forum. 514-516, 1536 (2006).
- 30 K. J. D. MacKenzie, I. W. M. Brown, M. E. Bowden, and R. H. Meinhold, J. Am. Ceram. Soc. 68, 298 (1985).
- 31 R. C. Kaze, L. M. Beleuk à Moungam, M. L. Fonkwe Djouka, A. Nana, E. Kamesu, U. Chinge Melo, and C. Leonelli, Appl. Clay Sci. 138, 48 (2017).
- 32 E. A. Obonyo, E. Kamesu, P. N. Lemougna, A. B. Tchamba, U. C. Melo, and C. Leonelli, Sustainability 6 5535, (2014).
- 33 M. L. Gualtieri, M. Romagnoli, S. Pollastri, and A. F. Gualtieri, Cem. Concr. Res. 67, 259 (2015).
- 34 J. J. Fitzgerald, S. F. Dec, and A. I. Hamza, Am. Miner. 74, 1405 (1989).
- 35 K. J. D. MacKenzie, S. Komphanchai, and R. Vagana, J. Eur. Ceram. Soc. 28, 177 (2008).
- 36 V. V. Boldyrev, Russ. Chem. Revs. 75, 177 (2006).
- 37 P. J. Sanchez-Soto, J. L. Perez-Rodriguez, I. Sobrados, and J. Sanz, Chem. Mater. 9, 677 (1997).
- 38 J. Davidovits, Geopolymer Chemistry and Applications, 4th ed., Institute Geopolymere, Saint Quentin, France, 2015, p. 333.
- 39 D. Kolousek, J. Brus, M. Urbanova, J. Andertova, V. Hulinsky, and J. Vorel, J. Mater. Sci. 42, 9267 (2007).
- 40 S. J. O'Connor and K. J. D. MacKenzie, J. Mater. Sci. 45, 3707 (2010).
- 41 D. R. M. Brew and K. J. D. MacKenzie, J. Mater. Sci. 42, 3990 (2007).
- 42 J. Fosgren, C. Pedersen, M. Stromme, and H. Engqvist, PLoS One 6, e17759 (2011).
- 43 X.-M. Cui, G.-J. Zheng, Y.-C. Han, F. Su, and J. Zhou, J. Power Sources 184, 652 (2008).
- 44 Y.-L. Tsai, J. V. Hanna, Y.-L. Lee, and M. E. Smith, J. Sol. State Chem. 183, 3017 (2010)
- 45 W. Gordon, J. Bell, and W. M. Kriven, Ceram. Trans. 165, 95 (2005).
- 46 J. L. Provis and J. S. J. Deventer, eds., Geopolymers Structure, Processing, Properties and Industrial Applications. Woodhead Publishing, Cambridge 2009, Chapt. 17.
- 47
G. Habert, and C. Oullet-Plamodon, RILEM Tech. Lett.
1, 17 (2016).
10.21809/rilemtechlett.2016.6 Google Scholar
- 48 A. Buchwald, C. Kaps, and M. Hohmann, in Proceedings of 11th National. Cement Chemistry Congress , Durban, South Africa, 2003, p. 1238.
- 49 C. Marín-López, J. L. Reyes Araiza, A. Manzano-Ramírez, J. C. Rubio Avalos, J. J. Perez-Bueno, M. S. Muñiz-Villareal, E. Ventura-Ramos, and Y. Vorobiev, Inorg. Mater. 45, 1429 (2009).
- 50 A. M. Aguirre-Guerrero, R. A. Robayo-Salazar, and R. Mejía de Gutiérrez, Appl. Clay Sci. 135, 437 (2017).
- 51 E. Vasconcelos, S. Fernandes, J. L. Barroso de Aguiar, and F. Pacheco-Torgal, Constr. Build. Mater. 25, 3213 (2011).
- 52 R. Pouhet and M. Cyr, Cem. Concr. Res. 88, 227 (2016).
- 53
K. J. D. MacKenzie and M. Welter, Geopolymer (aluminosilicate) composites: Synthesis, properties and applications, in Advances in Ceramic Matrix Composites (CMCs), I. M. Low, ed., Woodhead Publishing, Cambridge, UK, 2014, pp. 445-70.
10.1533/9780857098825.3.445 Google Scholar
- 54 M. Welter, M. Schmücker, and K. J. D. MacKenzie, J. Ceram. Sci.Technol. 6, 17 (2015).
- 55 A. Teixeira-Pinto, B. Varela, K. Shotri, R. S. P. Panandiker, and J. Lawson, Ceram. Eng. Sci. Proc. 28, 337 (2008).
- 56 M. Alzeer and K. J. D. Mackenzie, Appl. Clay Sci. 75-76, 148 (2013).
- 57 M. Alzeer and K. J. D. MacKenzie, J. Mater. Sci. 47, 6958 (2012).
- 58 E. Prud'homme, P. Michaud, E. Joussein, C. Peyratout, A. Smith, S. Arrii-Clacens, J. M. Clacens, and S. Rossignol, J. Eur. Ceram. Soc. 30, 1641 (2010).
- 59 V. Medri, E. Papa, J. Dedecek, H. Jirglova, P. Benito, A. Vaccari, and E. Landi, Ceram. Int. 39, 7657 (2013).
- 60 J. L. Bell and W. M. Kriven, Ceram. Eng. Sci. Proc. 29, 97 (2008).
- 61 P. Keawpapasson, C. Tippayasam, S. Ruangjan, P. Thavorniti, T. Panyathanmaporn, A. Fontaine, C. Leonelli, and D. Chaysuwan, Key Eng. Mater. 608, 207 (2014).
- 62 B. E. Glad and W. M. Kriven, J. Am. Ceram. Soc. 98, 2052 (2014).
- 63 D. Medpelli, J.-M. Seo, and D.-K. Seo, J. Am. Ceram. Soc. 97, 70 (2014).
- 64 Q. Tang, Y.-Y. Ge, K.-T. Wang, Y. He, and X.-M. Cui, Mater. Des. 88, 1244 (2015).
- 65 T. Kovářik, T. Křenek, M. Pola, D. Rieger, J. Kadlec, and P. Franče, Mater. Sci. Eng. 175, 012044 (2017).
- 66 T.-C. Hung, J.-S. Huang, Y.-W. Wang, and K.-Y. Lin, Constr. Build. Mater. 50, 328 (2014).
- 67 H. R. Rasouli, F. Golestani Fard, G. M. Nasab, K. J. D. Mackenzie, and M. Shahraki, Ceram. Int. 41, 7872 (2015).
- 68 K. Okada, T. Isobe, K. Katsumata, Y. Kameshima, A. Nakajima, and K. J. D. MacKenzie, Sci. Technol. Adv. Mater. 12, 064701 (2011).
- 69 K. Okada, A. Imase, T. Isobe, and A. Nakajima, J. Eur. Ceram. Soc. 31, 461 (2011).
- 70 R. E. Lyon, P. N. Balaguru, A. Foden, U. Sorathia, J. Davidovits, and M. Davidovics, Fire Mater. 21, 67 (1997).
- 71 J. Temuujin, W. Rickard, M. Lee, and A. van Riessen, J. Non-Cryst. Solids 357, 1399 (2011).
- 72 X.-M. Cui, P.-P. Liu, Y. He, J.-Y. Chen, and J. Zhou, Mater. Chem. Phys. 130, 1 (2011).
- 73 K. J. D. Mackenzie and M. J. Bolton, J. Mater. Sci. 44, 2851 (2009).
- 74 K. J. D. MacKenzie, M. E. Smith, and A. Wong. J. Mater. Chem. 17, 5090 (2007).
- 75 A. U. G. Yap, Y. S. Pek, R. A. Kumar, P. Cheang, and K. A. Khor, Biomaterials 23, 955 (2002).
- 76 H. Oudadesse, A. C. Derrien, M. Lefloch, and J. Davidovits, J. Mater. Sci. 42, 3092 (2007).
- 77 S. Martin, A. C. Derrien, H. Oudadesse, D. Chauvel-Lebret, and G. Cathelineau, Eur. Cell Mater. 9 (Suppl. 1 ) 71 (2005).
- 78 K. J. D. MacKenzie, N. Rahner, M. E. Smith, and A. Wong, J. Mater. Sci. 45, 999 (2010).
- 79 M. Catauro, F. Bollino, I. Kansal, E. Kamesu, I. Lancellotti, and C. Leonelli, AZojomo 0322 (2012). doi: 10.2240/azojomo0322.
- 80 E. Jämstorp, J. Fosgren, S. Bredenberg, H. Engqvist, and M. Strømme, J. Controlled Release 146, 370 (2010).
- 81 J. Fosgren, C. Pedersen, M. Strømme, and H. Engqvist, PLoS One 6, e17759 (2011).
- 82 O. Bortnovsky, J. P. Bezucha, P. Sazama, J. Dědeček, Z. Tvarùžková, and Z. Sobalik, Ceram. Eng. Sci. Proc. 31, 69 (2010).
- 83 P. Sazama, O. Bortnovsky, J. Dědeček, Z. Tvarùžková, and Z. Sobalik, Catal. Today 164, 92 (2011).
- 84 M. I. M. Alzeer, K. J. D. MacKenzie, and R. A. Keyzers, Appl. Catal. A 524, 173 (2016).
- 85 M. I. M. Alzeer, K. J. D. MacKenzie, and R. A. Keyzers, Micropororous Mesopororous Mater. 241, 316 (2017).
- 86 J. R. Gasca-Tirado, A. Manzano-Ramirez, C. Villasenor-Mora, M. S. Muniz-Villarreal, S. Sampieri-Bulbarela, J. C. Rubio-Avalos, V. Amigo-Borras, and R. N. Mendoza, Micropororous Mesopororous Mater. 153, 282 (2012).
- 87 M. Fallah, K. J. D. MacKenzie, J. V. Hanna, and S. J. Page, J. Mater. Sci. 50, 7374 (2015).
- 88 M. Falah and K. J. D. MacKenzie, Ceram. Int. 41, 13702 (2015).
- 89 M. Falah, K. J. D. MacKenzie, R. Knibbe, J. V. Hanna, and S. J. Page, J. Hazard. Mater. 318, 772 (2016).
- 90 V. F. F. Barbosa and K. J. D. Mackenzie, Mater. Res. Bull. 38, 319 (2003).
- 91 V. F. F. Barbosa and K. J. D. Mackenzie, Mater. Lett. 57, 1477 (2003).
- 92 C. E. White, J. L. Provis, T. Proffen, and J. S. J. van Deventer, J. Am. Ceram. Soc. 93, 3486 (2010).
- 93 J. L. Bell, P. E. Dreimeyer, and W. M. Kriven, J. Am. Ceram. Soc. 92, 1 (2009).
- 94 B. G. O'Leary and K. J. D. MacKenzie, J. Eur. Ceram. Soc. 35, 2755 (2015).
- 95 M. Alzeer, R. A. Keyzers, and K. J. D. MacKenzie, Ceram. Int. 40, 3553 (2014).
- 96 C. H. Rüscher, L. Schomberg, A. Schulz, and J. C. Buhl, Ceram. Eng. Sci. Proc. 34, 97 (2014).
- 97 J. R. Gasca-Tirado, J. C. Rubio-Avalos, M. S. Muniz-Villarreal, A. Manzano-Ramirez, J. L. Reyes-Araiza, S. Sampieri-Bulbarela, C. Villasenor-Mora, J. J. Perez-Bueno, L. M. Apatiga, and V. Amigo-Borras, Mater. Lett. 65, 880 (2011).
- 98 J. J. Rogers, K. J. D. MacKenzie, W. J. Trompetter, G. Rees, and J. V. Hanna, J. Non-Cryst. Solids 460, 98 (2017).
- 99 J. J. Rogers, Ph.D. thesis, Victoria University of Wellington, Wellington, New Zealand, 2016.
- 100 G. Fumba, J. S. Essomba, G. M. Tagne, J. N. Nsami, P. D. Bélibi Bélibi, and J. K. Mbadcam, J. Acad. Ind. Res. 3, 156 (2014).
- 101 M. I. Khan, T. K. Min, K. Azizli, S. Sufian, H. Ullah, and Z. Man, RSC Adv. 5, 61410 (2015).
- 102 K. J. D. MacKenzie and B. G. O'Leary, Mater. Lett. 63, 230 (2008).
- 103 K. J. D. MacKenzie, in Handbook of Alkali-activated Cements, Mortars and Concretes, F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt, eds., Woodhead Publishing, Cambridge, UK, 2015, p 780.