Helix–Coil Transition
Wayne L. Mattice
Louisiana State University, Baton Rouge, Louisiana
Search for more papers by this authorWayne L. Mattice
Louisiana State University, Baton Rouge, Louisiana
Search for more papers by this authorAbstract
Polymers' functional properties and stability are often correlated with their chain conformation. Understanding the helix–coil conformational change, characteristic to many natural and synthetic polyamino acids, is important not only to establishing the polymer stability but also for revealing interactions and functions of native proteins. This article overviews practical aspects of investigating this transition (e.g, titration experiments, optical activity, and spectroscopic methods) and theoretical models providing phenomenological parameters such as the helix content as a function of temperature, pH, molecular weight, concentration. Examples of modeling the helix–coil transition for two representative classes of polymers, homopolymers, and random copolymers, are also included.
Bibliography
“Helix–Coil Transitions” in EPSE 2nd ed., Vol. 7, pp. 685–698, by Harold A. Scheraga, Cornell University and W. L. Mattice, Louisiana State University.
Cited Publications
- 1 IUPAC-IUB Commission on Biochemical Nomenclature, Biochemistry 9, 3471 (1970).
- 2 L. Pauling and R. B. Corey, Proc. Natl. Acad. Sci. USA 37, 235 (1951).
- 3 K. C. Chou, G. Némethy, and H. A. Scheraga, J. Am. Chem. Soc. 106, 3161 (1984).
- 4 R. D. B. Fraser, and T. P. MacRae, Conformation in Fibrous Proteins, Academic Press, Inc., New York, 1973, Chap. 9.
- 5 P. Doty, J. H. Bradbury, and A. M. Holtzer, J. Am. Chem. Soc. 78, 947 (1956).
- 6 W. L. Mattice and H. A. Scheraga, Biopolymers 23, 1701, (1984).
- 7 R. H. Karlson, N. S. Norland, G. D. Fasman, and E. R. Blout, J. Am. Chem. Soc. 82, 2268 (1960).
- 8 A. Harada, S. Cammas, and K. Kataoka, Macromolecules 29, 6183 (1996).
- 9 I. K. Lednev, A. S. Karnoup, M. C. Sparrow, and S. A. Asher, J. Am. Chem. Soc. 121, 8074 (1999).
- 10 T. Wang, Y. J. Zhu, Z. Getahun, D. G. Du, C. Y. Huang, W. F. DeGrado, and F. Gai, J. Phys. Chem. B 108, 15301 (2004).
- 11 P. A. Thompson, V. Munoz, G. S. Jas, E. R. Henry, W. A. Eaton, and J. Hofrichter, J. Phys. Chem. B 104, 378 (2000).
- 12 P. Doty, A. Wada, J. T. Yang, and E. R. Blout, J. Polym. Sci. 23, 851 (1957).
- 13 F. H. C. Crick and A. Rich, Nature 176, 780 (1955).
- 14
P. H. von Dreele,
N. Lotan,
V. S. Ananthanarayanan,
R. H. Andreatta,
D. Poland, and
H. A. Scheraga,
Macromolecules
4,
408
(1971).
10.1021/ma60022a008 Google Scholar
- 15 P. Doty and J. T. Yang, J. Am. Chem. Soc. 78, 498 (1956).
- 16 J. E. Alter, G. T. Taylor, and H. A. Scheraga, Macromolecules 5, 739 (1972).
- 17 M. Go and H. A. Scheraga, Biopolymers 23, 1961 (1984).
- 18 D. Poland, and H. A. Scheraga, Theory of Helix-Coil Transitions in Biopolymers, Academic Press, Inc., New York, 1970.
- 19 G. Némethy and H. A. Scheraga, Q. Rev. Biophys. 10, 239 (1977).
- 20 B.H. Zimm and J. K. Bragg, J. Chem. Phys. 31, 526 (1959).
- 21 S. Lifson and A. Roig, J. Chem. Phys. 34, 1963 (1961).
- 22 D.C. Poland and H. A. Scheraga, J. Chem. Phys. 43, 2071 (1965).
- 23 P. J. Flory, Macromolecules 7, 381 (1974).
- 24 W. G. Miller and P. J. Flory, J. Mol. Biol. 15, 298 (1966).
- 25 W. L. Mattice, Macromolecules 13, 904 (1980).
- 26 H. A. Scheraga, J. A. Vile, and D. R. Ripoll, Biophys. Chem. 101, 255 (2002).
- 27 G. W. Lehman and J. P. McTague, J. Chem. Phys. 49, 3170 (1968).
- 28 A. Kidera, M. Mochizuki, R. Hasegawa, T. Hayashi, H. Sato, A. Nakajima, R. A. Fredrickson, S. P. Powers, S. Lee, and H. A. Scheraga, Macromolecules 16, 162 (1983).
- 29 D. Poland and H. A. Scheraga, Biopolymers 7, 887 (1969).
- 30 K. E. B. Platzer, V. S. Ananthanarayanan, R. H. Andreatta, and H. A. Scheraga, Macromolecules 5, 177 (1972).
- 31 M. Sueki, S. Lee, S. P. Powers, J. B. Denton, Y. Konishi, and H. A. Scheraga, Macromolecules 17, 148 (1984).
- 32 J. Wojcik, K. H. Altmann, and H. A. Scheraga, Biopolymers 30, 121 (1990).
- 33 E. J. Sorin and V. S. Pande, Biophys. J. 88, 2472 (2005).
- 34 R. B. Best and G. Hummer, J. Phys. Chem. B 113, 9004 (2009).