Antenna Characteristic Mode Analysis and Applications
Zi He
Nanjing University of Science and Technology, Nanjing, China
Search for more papers by this authorLing Guan
Beijing Institute of Environmental Features, Beijing, China
Search for more papers by this authorRushan Chen
Nanjing University of Science and Technology, Nanjing, China
Search for more papers by this authorZi He
Nanjing University of Science and Technology, Nanjing, China
Search for more papers by this authorLing Guan
Beijing Institute of Environmental Features, Beijing, China
Search for more papers by this authorRushan Chen
Nanjing University of Science and Technology, Nanjing, China
Search for more papers by this authorAbstract
In the field of electromagnetism, the characteristic mode (CM) method has been applied to theoretical analysis and engineering design of electromagnetic scattering and radiation due to its clear physical meaning and complete theory. In this article, the CMs are used as the entire-domain basis functions for solving electromagnetic scattering and radiation problems of large-scale, arbitrary arrangement of repetitive structures.
Firstly, the CM method for solving the scattering problems of nonconnected repetitive structures is reviewed, and the source mode is introduced to compensate the accuracy when analyzing radiation problems. Secondly, for connected repetitive structures, the buffer region is proposed to guarantee the current continuity on the surface of the conductor, and half-SWG basis functions are used for dielectric connected structures. Thirdly, a series of acceleration methods are proposed to improve the computational efficiency. To generate the reduced matrix fast, the translation invariance of repetitive structures and interpolation technology are utilized to fill the matrix entries. Multilevel Fast Multipole Algorithm (MLFMA) is also used to accelerate the matrix–vector products (MVPs) between the impedance matrix and the eigenvectors. At last, a hybrid MPI–OPENMP parallel scheme is proposed for solving large-scale finite array. The numerical examples have shown that the proposed method has a good accuracy and efficiency. It provides a strong tool for designing and optimizing antenna arrays and other EM repetitive structures.
Bibliography
- 1K. S. Yee. IEEE Trans Antennas Propag 1966, 14(3), pp 302–307.
10.1109/TAP.1966.1138693 Google Scholar
- 2J. M. Jin. The Finite Element Method in Electromagnetics; Wiley: New York, 2002.
- 3R. F. Harrington. Field Computation by Moment Methods; MacMillan Publisher Ltd.: New York, 1968.
- 4J. Song, C. C. Lu, and W. C. Chew. IEEE Trans Antennas Propag 2002, 45(10), pp 1488–1493.
- 5J. Yuan, C. Gu, and G. Han. IEEE Antennas Wirel Propag Lett 2009, 8(4), pp 716–719.
- 6W. B. Ewe, E. P. Li, H. S. Chu, and L. W. Li. IEEE Trans Antennas Propag 2007, 55(7), pp 2073–2079.
- 7S. M. Seo and J. F. Lee. IEEE Trans Magn 2005, 41(5), pp 1476–1479.
- 8Y. Takahashi, C. Matsumoto, and S. Wakao. IEEE Trans Magn 2007, 43(4), pp 1277–1280.
- 9W. Hackbusch. A Sparse Matrix Arithmetic Based on H -Matrices. Part I: Introduction to H –Matrices; Springer-Verlag New York, Inc, 1999.
- 10B. Després, P. Joly, J. E. Roberts. A Domain Decomposition Method for the Harmonic Maxwell Equations, in IMACS International Symposium on Iterative Methods in Linear Algebra; Amsterdam, North Holland, pp 475–484; 1992.
- 11W. Li, W. Hong, and H. Zhou. Microw Opt Technol Lett 2007, 49(2), pp 265–274.
- 12Z. Peng, X. Wang, and J. F. Lee. IEEE Trans Antennas Propag 2011, 59(9), pp 3328–3338.
- 13M. K. Li and C. C. Weng. IEEE Trans Antennas Propag 2007, 55(1), pp 130–138.
- 14M. K. Li and W. C. Chew. IEEE Trans Antennas Propag 2008, 56(8), pp 2389–2397.
- 15P. Ylä-Oijala and M. Taskinen. Waves Random Complex Media 2009, 19(1), pp 105–125.
- 16T. Su, D. Ding, Z. Fan, and R. Chen. IEEE Trans Antennas Propag 2014, 62(2), pp 983–985.
- 17E. Suter and J. Mosig. Microwave Opt Tech Lett 2000, 26, pp 270–277.
- 18I. Stevanovic and J. Mosig. Microw Opt Technol Lett 2004, 42(2), pp 138–143.
- 19V. Prakash and R. Mittra. Microw Opt Technol Lett 2003, 36(2), pp 95–100.
- 20R. Mittra. Computational Electromagnetics: Recent Advances and Engineering Applications; Springer Science Business Media: New York, 2014.
10.1007/978-1-4614-4382-7 Google Scholar
- 21L. Matekovits, V. A. Laza, and G. Vecchi. IEEE Trans Antennas Propag 2007, 55(9), pp 2509–2521.
- 22W. B. Lu, T. J. Cui, G. Q. Zhi, X. X. Yin, and W. Hong. IEEE Trans Antennas Propag 2004, 52(11), pp 3078–3085.
- 23R. J. Garbacz. Proc IEEE 1965, 53(8), pp 856–864.
- 24R. F. Harrington and J. R. Mautz. IEEE Trans Antennas Propag 1971, 19(5), pp 629–639.
- 25R. F. Harrington and J. R. Mautz. IEEE Trans Antennas Propag 1971, 19(5), pp 622–628.
- 26R. F. Harrington, J. R. Mautz, and Y. Chang. IEEE Trans Antennas Propag 1972, 20(2), pp 194–198.
- 27Y. Chang and R. F. Harrington. IEEE Trans Antennas Propag 1977, 25(6), pp 789–795.
- 28Q. I. Dai, H. U. I. Gan, W. C. Chew, Q. S. Liu, and S. Sun. Characteristic Mode Theory Based on Combined Field Integral Equation, in 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, pp 1164–1165; 2015.
- 29Q. I. Dai, Q. S. Liu, H. U. I. Gan, and W. C. Chew. IEEE Trans Antennas Propag 2015, 63(9), pp 3973–3981.
- 30H. Alroughani, J. Ethier, and D. A. Mc Namara. Observations on Computational Outcomes for the Characteristic Modes of Dielectric Objects, in IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, pp 844–845; 2014.
- 31Z. T. Miers and B. K. Lau. IEEE Trans Antennas Propag 2016, 64(7), pp 2595–2607.
- 32F. G. Hu and C. F. Wang. IEEE Trans Antennas Propag 2016, 64(11), pp 4770–4776.
- 33Y. Chen and C. Wang. Characteristic Modes: Theory and Applications in Antenna Engineering; Wiley, 2015.
10.1002/9781119038900 Google Scholar
- 34Y. Chen, L. Guo, and S. Yang. Int J Antennas Propag 2016, 2016(15), pp 1–8.
- 35R. T. Maximidis, C. L. Zekios, T. N. Kaifas, E. E. Vafiadis, and G. A. Kyriacou. Characteristic Mode Analysis of Composite Metal-Dielectric Structure, Based on Surface Integral Equation/Moment Method, in The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2014.
- 36R. F. Harrington and J. R. Mautz. IEEE Trans Antennas Propag 1972, 20(4), pp 446–454.
- 37Y. Shi and L. Zhang. Opt Express 2017, 25(26), pp 32263–32279.
- 38M. C. Fabres, E. A. Daviu, A. V. Nogueira, and M. F. Bataller. IEEE Antennas Propag Mag 2007, 49(5), pp 52–68.
- 39W. Wu and Y. P. Zhang. IEEE Antennas Propag Mag 2010, 52(6), pp 67–77.
- 40K. Obeidat, B. D. Raines, and R. G. Rojas. IEEE Trans Antennas Propag 2010, 58(1), pp 203–207.
- 41E. Safin and D. Manteuffel. IEEE Trans Antennas Propag 2015, 63(4), pp 1756–1764.
- 42B. D. Raines, E. A. Elghannai, and R. G. Rojas. Computer-aided Antenna Feed Design Using Characteristic Modes, in 2015 European Microwave Conference (EuMC); IEEE, 2015.
- 43B. D. Raines. Systematic Design of Multiple Antenna Systems Using Characteristic Modes; The Ohio State University: USA, 2011.
- 44F. A. Dicandia, S. Genovesi, and A. Monorchio. IEEE Trans Antennas Propag 2018, 66(3), pp 1102–1113.
- 45F. A. Dicandia, S. Genovesi, and A. Monorchio. IEEE Trans Antennas Propag 2017, PP(8):1-1.
- 46F. A. Dicandia, S. Genovesi, and A. Monorchio. IEEE Trans Antennas Propag 2016, 64(7), pp 2698–2706.
- 47K. Obeidat, B. D. Raines, R. G. Rojas, and B. T. Strojny. IEEE Trans Antennas Propag 2010, 58(10), pp 3106–3113.
- 48J. Ethier and D. A. Mcnamara. Electron Lett 2012, 48(9), pp 471–472.
- 49J. Ethier. Antenna Shape Synthesis Using Characteristic Mode Concepts; University of Ottawa: Canada, 2012.
- 50D. Manteuffel and R. Martens. IEEE Trans Antennas Propag 2016, 64(7), pp 2689–2697.
- 51D. W. Kim and S. Nam. IEEE Trans Antennas Propag 2017, 66(3), pp 1076–1085.
- 52H. Li, Z. T. Miers, and B. K. Lau. IEEE Trans Antennas Propag 2014, 62(5), pp 2756–2766.
- 53Z. Miers, H. Li, and B. K. Lau. IEEE Antennas Wirel Propag Lett 2013, 12, pp 1696–1699.
- 54E. H. Newman. IEEE Trans Antennas Propag 1977, 25(4), pp 530–795.
- 55Y. Chen and C. F. Wang. IEEE Trans Antennas Propag 2014, 62(2), pp 535–545.
- 56K. P. Murray and B. A. Austin. IEE Proc Microw Antennas Propag 1994, 141(3), pp 151–154.
- 57B. A. Austin and K. P. Murray. IEEE Antennas Propag Mag 1998, 40(1), pp 7–21.
- 58K. Ren, M. R. Nikkhah, and N. Behdad. IEEE Trans Antennas Propag 2020, 68(7), pp 5130–5141.
- 59T. Y. Shih and N. Behdad. IEEE Trans Antennas Propag 2016, 64(7), pp 2648–2659.
- 60Y. Chen and C. F. Wang. IEEE Trans Antennas Propag 2015, 63(3), pp 1004–1013.
- 61F. A. Dicandia and S. Genovesi. IEEE Antennas Propag Mag 2020, 62(4), pp 82–93.
- 62F. A. Dicandia and S. Genovesi. IEEE Access 2020, 8, pp 176050–176061.
- 63O. Bucci and G. Di Massa. J Phys D-Appl Phys 1995, 28, pp 2235–2244.
- 64G. Amendola, G. Angiulli, and G. D. Massa. Electromagnetics 1998, 18(6), pp 593–612.
- 65G. Amendola, G. Angiulli, and G. D. Massa. Scattering from Arbitrarily Shaped Cylinders by Use of Characteristic Modes, in Applied Computational Electromagnetic Society Symposium, Monterey, pp 1290–1295; 1997.
- 66G. Amendola, G. Angiulli, and G. D. Massa. Microw Opt Technol Lett 1997, 16(4), pp 243–249.
- 67G. Amendola, G. Angiulli, and G. D. Massa. Application of Characteristic Modes to the Analysis of Microstrip Array, in Progress in Electromagnetics Research Symposium, Cambridge, pp 1–2; 2000.
- 68A. A. Salih, Z. Chen, and K. Mouthaan. IEEE Trans Antennas Propag 2017, 65(3), pp 1141–1150.
- 69F. H. Lin and Z. N. Chen. IEEE Trans Antennas Propag 2017, 65(4), pp 1706–1713.
- 70B. Feng, X. He, and J. C. Cheng. IEEE Access 2020, PP(99), pp 1–1.
- 71F. H. Lin and Z. N. Chen. IEEE Trans Antennas Propag 2020, 69(6), pp 3512–3516.
- 72P. Ylä-Oijala, D. C. Tzarouchis, E. Raninen, and A. Sihvola. IEEE Trans Antennas Propag 2017, 65(5), pp 2165–2172.
- 73P. Ylä-Oijala, J. Lappalainen, and S. Järvenpää. IEEE Trans Antennas Propag 2018, 66(1), pp 487–492.
- 74A. M. Hassan, F. Vargas-Lara, J. F. Douglas, and E. J. Garboczi. IEEE Trans Antennas Propag 2016, 64(7), pp 2743–2757.
- 75M. C. Fabrés. Systematic Design of Antennas Using the Theory of Characteristic Modes. PhD dissertation. Dept. Telecom. Eng., Universitat Politècnica de València, Valencia, Spain, 2007.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: