Face Recognition Via Sparse Representation
Meng Yang
College of Computer Science & Software Engineering, Shenzhen University, Shenzhen, China
Search for more papers by this authorMeng Yang
College of Computer Science & Software Engineering, Shenzhen University, Shenzhen, China
Search for more papers by this authorAbstract
Recent years have witnessed rapid developments of sparse representation in various classification tasks, including face recognition (FR). The success of sparse representation-based classification (SRC) on FR greatly boosts the research of sparsity-based classification techniques. However, many problems are still pending to be further addressed. For example, what is the role of l0 or l1 norm sparsity in it? How to design a robust representation fidelity term to handle various outliers? How to extract effective features to improve the accuracy and efficiency of SRC? In this article, we aim to answer these questions via three aspects:
- Role of sparse coefficient: Several works have questioned the role of sparse coefficients. Especially, a collaborative representation-based classification has been proposed for FR, which use l2-norm to regularize the coding coefficient, with similar accuracy to SRC but much faster speed. However, there is also some work that defends the sparsity of coding coefficients when an appropriate dictionary is used.
- Regularization on the representation residual: Robust models with effective representation terms have been developed to handle various outliers in face images. For instance, by assuming the coding residual and the coding coefficient are respectively independent and identically distributed, regularized robust coding was proposed based on maximum a posterior estimation. Moreover, structured representation models were also proposed to make use of the image structure information.
- Extended sparse representation model: Extended sparse models for FR include misalignment robust models, undersampled models, and multifeature models.
These FR approaches via sparse representation have achieved very promising results.
Bibliography
- 1 P. Viola and M. J. Jones. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57(2), pp 137–154.
- 2 W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face Recognition: A Literature Survey. ACM Comput. Surv. 2003, 35(4), pp 399–458.
- 3
S. Z. Li and
A. K. Jain.
Handbook of Face Recognition,
2nd ed.;
Springer,
2011.
10.1007/978-0-85729-932-1 Google Scholar
- 4
R. Jafri and
H. R. Arabnia.
A Survey of Face Recognition Techniques.
J. Inf. Process. Syst.
2009,
5(2),
pp 41–68.
10.3745/JIPS.2009.5.2.041 Google Scholar
- 5
D. Maltoni,
D. Maio,
A. K. Jain, and
S. Prabhakar.
Handbook of Fingerprint Recognition,
2nd ed.;
Springer,
2009.
10.1007/978-1-84882-254-2 Google Scholar
- 6 K. W. Bowyer, K. Hollingsworth, and P. J. Flynn. Image Understanding for Iris Biometrics: A Survey. Comput. Vis. Image Und. 2008, 110(2), pp 281–307.
- 7 A. Kong, D. Zhang, and M. Kamel. A Survey of Palmprint Recognition. Pattern Recognit. 2009, 42(7), pp 1408–1418.
- 8 A. K. Jain, A. Ross, and S. Prabhakar. An Introduction to Biometric Recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14(1), pp 4–20.
- 9 X. Y. Tan, S. C. Chen, Z. H. Zhou, and F. Y. Zhang. Face Recognition from a Single Image Per Person: A Survey. Pattern Recognit. 2006, 39, pp 1725–1745.
- 10 A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino. 2D and 3D Face Recognition: A Survey. Pattern Recognit. Lett. 2007, 28(14), pp 1885–1906.
- 11 R. Chellappa, C. L. Wilson, and S. Sirohey. Human and Machine Recognition of Faces: A Survey. Proc. IEEE 1995, 83(5), pp 705–741.
- 12 S. G. Kong, J. Heo, B. R. Abidi, J. Paik, and M. A. Abidi. Recent Advances in Visual and Infrared Face Recognition: A Review. Comput. Vis. Image Understand. 2005, 97(1), pp 103–135.
- 13 M. Turk and A. Pentland. Eigenfaces for Recognition. J. Cogn. Neurosci. 1991, 3(1), pp 71–86.
- 14 P. N. Belhumeur, J. P. Hespanha, and D. J. Kriengman. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. and Mach. Intell. 1997, 19(7), pp 711–720.
- 15 S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290(5500), pp 2323–2325.
- 16 X. He, S. Yan, Y. Hu, P. Niyogi, and H. J. Zhang. Face Recognition Using Laplacian Faces. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, pp 328–340.
- 17 L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg. Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19(7), pp 775–779.
- 18 T. F. Cootes, C. J. Taylor, D. Cooper, and J. Graham. Active Shape Models-Their Training and Application. Comput. Vis. Image Understand. 1995, 61(1), pp 38–59.
- 19 T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active Appearance Models. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23(6), pp 681–685.
- 20 B. Amberg, R. Knothe, and T. Better. Expression Invariant 3D Face Recognition with a Morphable Model, in Proc. AFGR, 2008.
- 21 P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3D Face Model for Pose and Illumination Invariant Face Recognition, in Proc. IEEE Conf. Advanced Video and Signal Based Surveillance, 2009.
- 22 V. Blanz, S. Romdhani, and T. Vetter. Face Identification Across Different Poses and Illuminations with A 3D Morphable Model, in Proc. AFGR, 2002.
- 23 G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. Principal Component Analysis of Image Gradient Orientations for Face Recognition,” in Proc. AFGR Workshops, 2011.
- 24 T. P. Zhang, Y. Y. Tang, B. Fang, Z. W. Shang, and X. Y. Liu. Face Recognition Under Varying Illumination Using Gradientfaces. IEEE Trans. Image Process. 2009, 18(11), pp 2599–2606.
- 25 A. Timo, H. Abdenour, and P. Matti. Face Recognition with Local Binary Patterns, in Proc. ECCV, 2004.
- 26 S. F. Xie, S. G. Shan, X. L. Chen, and J. Chen. Fusing Local Patterns of Gabor Magnitude and Phase for Face Recognition. IEEE Trans. Image Process. 2010, 19(5), pp 1349–1361.
- 27 W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang. Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A Novel Non-Statistical Model for Face Representation and Recognition, in Proc. ICCV, 2005.
- 28 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86(11), pp 2278–2321.
- 29 M. Masakazu, K. Mori, Y. Mitari, and Y. Kaneda. Subject Independent Facial Expression Recognition with Robust Face Detection Using a Convolutional Neural Network. Neural Netw. 2003, 16(5), pp 555–559.
- 30 C. Dan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. Flexible, High Performance Convolutional Neural Networks for Image Classification, in Proceedings of the Twenty-Second international joint conference on Artificial Intelligence, vol. 2, pp 1237–1242, 2011.
- 31 A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks, in Proc. Adv. Neural Inf. Process. Syst. 1, pp 1097–1105, 2012.
- 32 L., Steve, C. L. Giles, A. C. Tsoi, and A. D. Back. Face Recognition: A Convolutional Neural Network Approach. IEEE Trans. Neural Netw. 1997, 8(1), pp 98–113.
- 33 P. Sermanet and Y. LeCun. Traffic Sign Recognition with Multi-Scale Convolutional Networks, in Proceedings of International Joint Conference on Neural Networks (IJCNN'11), 2011.
- 34 Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification, in Proc. Neural Information Processing Systems, 2014.
- 35 Z. Zhu, P. Luo, X. Wang, and X. Tang. Multi-View Perceptron: A Deep Model for Learning Face Identity and View Representations,” in Proc. Neural Information Processing Systems, 2014.
- 36 J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(2), pp 210–227.
- 37 S. Z. Li and J. Lu. Face Recognition Using Nearest Feature Line Method. IEEE Trans. Neural Netw. 1999, 10(2), pp 439–443.
- 38 J. Laaksonen. Local Subspace Classifier, in Proc. Int'l Conf. Artificial Neural Networks, 1997.
- 39 I. Naseem, R. Togneri, and M. Bennamoun. Linear Regression for Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32(11), pp 2106–2112.
- 40 K. Lee, J. Ho, and D. Kriegman. Acquiring Linear Subspaces for Face Recognition Under Variable Lighting. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(5), pp 684–698.
- 41 D. Field. What is the Goal of Sensory Coding? Neural Comput. 1994, 6(4), pp 559–601.
- 42 B. Olshausen and D. Field. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vis. Res. 1997, 37(23), pp 3311–3325.
- 43 B. A. Olshausen and D. J. Field. Emergence of Simple-Cell Receptive Field Properties. Lett. Nat. 1996, 381, pp 607–609.
- 44 Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition, in Proc. 27th Annual Asilomar Conf. Signals, Syst. Comput., 1993.
- 45 D. Donoho. For Most Large Underdetermined Systems of Linear Equations the Minimal l1-Norm Solution is also the Sparsest Solution. Comm. Pure Appl. Math 2006, 59(6), pp 797–829.
- 46 P. Zhao and B. Yu. On Model Selection Consistency of LASSO. J. Mach. Learn. Res. 2006, (7), pp 2541–2563.
- 47 P. O. Hoyer. Non-Negative Sparse Coding, in Proc. IEEE Workshop Neural Networks for Signal Processing, 2002.
- 48 Y. N. Liu, F. Wu, Z. H. Zhang, Y. T. Zhuang, and S. C. Yan. Sparse Representation Using Nonnegative Curds and Whey, in Proc. CVPR, 2010.
- 49 J. A. Tropp and S. J. Wright. Computational Methods for Sparse Solution of Linear Inverse Problems. Proc. IEEE 2010, 98(6), pp 948–958. Special Issue on Applications of Compressive Sensing & Sparse Representation.
- 50 M. Elad and M. Aharon. Image Denoising via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Trans. Image Process. 2006, 15(12), pp 3736–3745.
- 51 J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-Local Sparse Models for Image Restoration, in Proc. ICCV, 2009.
- 52 M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process. 2006, 54(11), pp 4311–4322.
- 53 S. H. Gao, I. W.-H. Tsang, and L.-T. Chia. Kernel Sparse Representation for Image Classification and Face Recognition, in Proc. ECCV, 2010.
- 54 E. Elhamifar and R. Vidal. Robust Classification Using Structured Sparse Representation, in Proc. CVPR, 2011.
- 55 X. T. Yuan and S. C. Yan. Visual Classification with Multitask Joint Sparse Representation, in Proc. CVPR, 2010
- 56 J. Mairal, F. Bach, and J. Ponce. Task-Driven Dictionary Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(4), pp 791–804.
- 57 M. Yang, L. Zhang, X. C. Feng, and D. Zhang. Fisher Discrimination Dictionary Learning for Sparse Representation, in Proc. ICCV, 2011.
- 58 Z. L. Jiang, Z. Lin, and L. S. Davis. Learning A Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD, in Proc. CVPR, 2011.
- 59 Q. Zhang and B. X. Li. Discriminative K-SVD for Dictionary Learning in Face Recognition, in Proc. CVPR, 2010.
- 60 L. Zhang, M. Yang, X. C. Feng, and D. Zhang. Sparse Representation or Collaborative Representation Which Helps Face Recognition? in Proc. ICCV, 2011.
- 61 M. Yang, L. Zhang, J. Yang, and D. Zhang. Robust Sparse Coding for Face Recognition, in Proc. CVPR, 2011.
- 62 M. Yang, L. Zhang, J. Yang, and D. Zhang. Regularized Robust Coding for Face Recognition. IEEE Trans. Image Process. 2013, 22(5), pp 1753–1766.
- 63 R. He, W. S. Zheng, and B. G. Hu. Maximum Correntropy Criterion for Robust Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(8), pp 1561–1576.
- 64 R. He, W. S. Zheng, B. G. Hu, and X. W. Kong. A Regularized Correntropy Framework for Robust Pattern Recognition. Neural Comput. 2011, 23, pp 2074–2100.
- 65 M. Yang, L. Zhang, and D. Zhang. Misalignment Robust Representation for Face Recognition, in Proc. ECCV, 2012.
- 66 W. H. Deng, J. N. Hu, and J. Guo. Extended SRC: Undersampled Face Recognition via Intra-Class Variant Dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(9), pp 1864–1870.
- 67 M. Yang, L. V. Gool, and L. Zhang. Sparse Variation Dictionary Learning for Face Recognition with a Single Training Sample Per Person, in Proc. ICCV, 2013.
- 68 M. Yang, L. Zhang, D. Zhang, and S. L. Wang. Relaxed Collaborative Representation for Pattern Classification, in Proc. CVPR, 2012.
- 69 A. Georghiades, P. Belhumeur, and D. Kriegman. From Few to Many: Illumination Cone Models for Face Recognition Under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23(6), pp 643–660.
- 70 Y. Xu, D. Zhang, J. Yang, and J. Y. Yang. A Two-Phase Test Sample Sparse Representation Method for Use with Face Recognition. IEEE Trans. Circuits Syst. Video Technol. 2011, 21(9), pp 1255–1262.
- 71 Y. Xu, Q. Zhu, Z. Z. Fan, D. Zhang, J. X. Mia, and Z. H. Lai. Using the Idea of the Sparse Representation to Perform Coarse to Fine Face Recognition. Inf. Sci. 2013, 238, pp 138–148.
- 72 J. J. Wang, J. C. Yang, K. Yu, F. J. Lv, and T. Huang. Locality-Constrained Linear Coding for Image Classification, in Proc. CVPR, 2010.
- 73 P. Berkes, B. L. White, and J. Fiser. No Evidence for Active Sparsification in the Visual Cortex, in Proc. NIPS, 2009.
- 74 Q. Shi, A. Eriksson, A. Hengel, and C. Shen. Is Face Recognition Really a Compressive Sensing Problem? in Proc. CVPR, 2011.
- 75 R. Rigamonti, M. Brown, and V. Lepetit. Are Sparse Representations Really Relevant for Image Classification? in Proc. CVPR, 2011.
- 76 W. H. Deng, J. N. Hu, and J. Guo. In Defense of Sparsity Based Face Recognition, in Proc. CVPR, 2013.
- 77 J. Wright and Y. Ma. Dense Error Correction via l1 Minimization. IEEE Trans. Inf. Theory 2010, 56(7), pp 3540–3560.
- 78 Z. Zhou, A. Wagner, H. Mobahi, J. Wright, and Y. Ma. Face Recognition with Contiguous Occlusion Using Markov Random Fields, in Proc. ICCV, 2009.
- 79 J. Yang, J. J. Qian, L. Luo, F. L. Zhang, and Y. C. Gao. Nuclear Norm based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes, arXiv:1405.1207, 2014.
- 80 S. Shan, Y. Chang, W. Gao, B. Cao, and P. Yang. Curse of Mis-Alignment in Face Recognition: Problem and A Novel Mis-Alignment Learning Solution, in Proc. AFGR, 2004.
- 81 W. H. Deng, J. N. Hu, J. W. Lu, and J. Guo. Transform-Invariant PCA: A Unified Approach to Fully Automatic Face Alignment, Representation, and Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36(6), pp 1275–1284.
- 82 S. C. Yan, H. Wang, J. Z. Liu, X. O. Tang, and T. S. Huang. Misalignment Robust Face Recognition. IEEE Trans. Image Process. 2010, 19, pp 1087–1096.
- 83 A. Wagner, J. Wright, A. Ganesh, Z. H. Zhou, and Y. Ma. Towards A Practical Face Recognition System: Robust Registration and Illumination by Sparse Representation, in Proc. CVPR, 2009.
- 84 J. Z. Huang, X. L. Huang, and D. Metaxas. Simultaneous Image Transformation and Sparse Representation Recovery, in Proc. CVPR, 2008.
- 85 A. N. Li, S. G. Shan, and W. Gao. Coupled Bias–Variance Tradeoff for Cross-Pose Face Recognition. IEEE Trans. Image Process. 2012, 21(1), pp 305–315.
- 86 H. Mohammadzade and D. Hatzinakos. Projection into Expression Subspaces for Face Recognition from Single Sample Per Person. IEEE Affect. Comput. 2013, 4(1), pp 69–82.
- 87 L. S. Zhuang, T. H. Chan, A. Y. Yang, S. S. Sastry, and Y. Ma. Sparse Illumination Learning and Transfer for Single-Sample Face Recognition with Image Corruption and Misalignment. Int. J. Comput. Vis. 2014.
- 88 M. Yang and L. Zhang. Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary, in Proc. ECCV, 2010.
- 89 M. Yang, L. Zhang, S. C. K. Shiu, and D. Zhang. Robust Kernel Representation for Face Recognition with Statistical Local Feature. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24(6), pp 900–912.
- 90 S. Liao, A. K. Jain, and S. Z. Li. Partial Face Recognition: Alignment-Free Approach. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35(5): pp 1193–205.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: