Spectral Analysis
First published: 27 December 1999
Abstract
The sections in this article are
- 1 Nonparametric Methods for Spectral Estimation
- 2 Parametric Methods for Rational Spectral Estimation
- 3 Parametric Methods for Sinusoidal Spectral Estimation
- 4 Applications To Time-Varying Signal Spectral Analysis
Bibliography
- 1 M. S. Bartlett Smoothing periodograms for time series with continuous spectra, Nature, 161: 686–687, 1948.
- 2 P. D. Welch The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms, IEEE Trans. Audio Electroacoust., AU-15: 70–76, 1967.
- 3 R. B. Blackman J. W. Tukey The Measurement of Power Spectra from the Point of View of Communication Engineering, New York: Dover, 1959.
- 4 J. Capon Higher-resolution frequency-wavenumber spectrum analysis, Proc. IEEE, 57: 1408–1418, 1969.
- 5 L. C. Pusey High resolution spectral estimates, Lincoln Laboratory, M.I.T., Tech. Note, Jan. 21, 1975–7, 1975.
- 6 N. Levinson The Wiener RMS (root mean square) criterion in filter design and prediction, J. Math. Phys., 25: 261–278, 1947.
- 7
J. Durbin
The fitting of time series models,
Rev. Inst. Int. Stat.,
28:
233–244,
1960.
10.2307/1401322 Google Scholar
- 8 J. C. Chow On the estimation of the order of a moving-average process, IEEE Trans. Autom. Control, AC-17: 386–387, 1972.
- 9 J. A. Cadzow Spectral estimation: An overdetermined rational model equation approach, Proc. IEEE,70: 907–939, 1982.
- 10 X. D. Zhang Y. S. Zhang Determination of the MA order of an ARMA process using sample correlations, IEEE Trans. Signal Process., SP-41: 2277–2280, 1993.
- 11 J. C. Chow On estimating the orders of an autoregressive moving-average process with uncertain observations, IEEE Trans. Autom. Control, AC-17: 707–709, 1972.
- 12 V. F. Pisarenko The retrieval of harmonics from a covariance function, Geophys. J. Roy. Astron. Soc., 33: 347–366, 1973.
- 13 R. O. Schmidt Multiple emitter location and signal parameter estimation, Proc. RADC, Spectral Estimation Workshop,Rome, NY, 243–258, 1979.
- 14 A. Paulraj R. Roy T. Kailath A subspace rotation approach to signal parameter estimation, Proc. IEEE,74: 1044–1054, 1986.
- 15 R. Roy T. Kailath ESPRIT—Estimation of signal parameters via rotational invariance techniques, IEEE Trans. Acoust. Speech Signal Process., ASSP-37: 984–995, 1989.
- 16 M. Wax T. Kailath Detection of signals by information theoretic criteria, IEEE Trans. Acoust. Speech Signal Process., ASSP-33: 387–392, 1985.
- 17 R. Kumaresan R. W. Tufts Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise, IEEE Trans. Acoust. Speech Signal Process., ASSP-30: 833–840, 1982.
- 18 Y. Li K. J. R. Liu J. Razavilar A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation, IEEE Trans. Signal Process., SP-45: 481–486, 1997.
- 19 L. J. Griffiths Rapid measurement of digital instantaneous frequency, IEEE Trans. Acoust. Speech Signal Process., ASSP-23: 207–222, 1975.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: