Nonlinear Systems
First published: 27 December 1999
Abstract
The sections in this article are
- 1 Weighted Median Filters
- 2 Median Affine FIR Filters
- 3 Weighted Myriad Filters
- 4 Research Topics in Nonlinear Filtering
Bibliography
- 1 H. M. Hall A new model for “impulsive” phenomena: Application to atmospheric-noise communication channels, Technical Reports 3412-8 and 7050-7, Stanford Electronics Laboratories, Stanford University, Stanford, CA, August 1966.
- 2 J. Ilow D. Hatzinakos Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers, IEEE Trans. Signal Process., submitted for publication.
- 3
B. Mandelbrot
Long-run linearity, locally Gaussian processes, H-spectra, and infinite variances,
Int. Econ. Rev.,
10:
82–111,
1969.
10.2307/2525574 Google Scholar
- 4 J. H. Miller J. B. Thomas Detectors for discrete-time signals in non-Gaussian noise, IEEE Trans. Inf. Theory, IT-18: 241–250, 1972.
- 5
C. L. Nikias
M. Shao
Signal Processing with Alpha-Stable Distributions and Applications,
New York:
Wiley-Interscience,
1995.
10.1097/00005373-199510000-00034 Google Scholar
- 6 V. Zolotarev One-Dimensional Stable Distributions, Providence, RI: Amer. Math. Soc., 1986.
- 7 N. C. Gallagher, Jr. G. L. Wise A theoretical analysis of the properties of median filters, IEEE Trans. Acoust. Speech Signal Process., 29: 1136, December 1981.
- 8 F. Y. Edgeworth A new method of reducing observations relating to several quantities, Phil. Mag. (Fifth Series), 24: 1887.
- 9 O. Yli-Harja J. Astola Y. Neuvo Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation, IEEE Trans. Acoust. Speech Signal Process., 39: 395–410, 1991.
- 10 R. C. Hardie C. G. Boncelet, Jr. LUM filters: A class of rank order based filters for smoothing and sharpening, IEEE Trans. Signal Process., 41: 1061–1076, 1993.
- 11 S.-J. Ko Y. H. Lee Center weighted median filters and their applications to image enhancement, IEEE Trans. Circuits Syst., 38: 984–993, 1991.
- 12 G. R. Arce A generalized weighted median filter structure admitting real-valued weights, IEEE Trans. Signal Process., submitted for publication.
- 13 L. Yin Y. Neuvo Fast adaptation and performance characteristics of fir-wos hybrid filters, IEEE Trans. Signal Process., 42: 1610–1628, 1994.
- 14 A. Flaig G. R. Arce K. E. Barner Affine order statistic filters: A data-adaptive filtering framework for nonstationary signals, IEEE Trans. Signal Process., to be published.
- 15 K. E. Barner A. Flaig G. R. Arce Fuzzy time–rank relations and order statistics, IEEE Signal Process. Lett., submitted for publication.
- 16 A. Zyweck R. E. Bogner High-resolution radar imagery of mirage III aircraft, IEEE Trans. Antennas Propag., 42: 1356–1360, 1994.
- 17 J. G. Gonzalez G. R. Arce Weighted myriad filters: A robust filtering framework derived from alpha-stable distributions, IEEE Trans. Signal Process., submitted for publication.
- 18 S. Kalluri G. R. Arce Robust frequency-selective filtering using generalized weighted myriad filters admitting real-valued weights, IEEE Trans. Signal Process., submitted for publication.
- 19 S. Kalluri G. R. Arce Fast weighted myriad computation using fixed point searches, IEEE Trans. Signal Process., submitted for publication.
- 20 W. B. McCain C. D. McGillem Performance improvement of dpll's in non-gaussian noise using robust estimators, IEEE Trans. Commun., 35: 1207–1216, 1987.
- 21 R. W. Hawley N. C. Gallagher M. P. Fitz Stack filter phase lock loops, IEEE Trans. Signal Process., 38: 317–329, 1994.
- 22 E. J. Coyle J.-H. Lin Stack filters and the mean absolute error criterion, IEEE Trans. Acoust. Speech Signal Process., 36: 1244–1254, 1988.
- 23 E. J. Coyle J.-H. Lin M. Gabbouj Optimal stack filtering and the estimation and structural approaches to image processing, IEEE Trans. Acoust. Speech Signal Process., 37: 2037–2066, 1989.
- 24 P. Wendt E. J. Coyle N. C. Gallagher, Jr. Stack filters, IEEE Trans. Acoust. Speech Signal Process., 34: August 1986.
- 25 I. Tabus D. Petrescu M. Gabbouj A training framework for stack and Boolean filtering—fast optimal procedures and robustness case study, IEEE Trans. Image Process., 5: 809–826, 1996.
- 26 P.-T. Yu R.-C. Chen Fuzzy stack filters—their definitions, fundamental properties, and application in image processing, IEEE Trans. Image Process., 5: 838–854, 1996.
- 27 F. Palmieri C. G. Boncelet, Jr. Ll-filters—a new class of order statistic filters, IEEE Trans. Acoust. Speech Signal Process., 37: 691–701, 1989.
- 28 F. Palmieri C. G. Boncelet, Jr. Frequency analysis and synthesis of a class of nonlinear filters, IEEE Trans. Acoust. Speech Signal Process., 38: 1363–1372, 1990.
- 29 P. Ghandi S. A. Kassam Design and performance of combination filters, IEEE Trans. Signal Process., 39: 1524–1540, 1991.
- 30 K. E. Barner Colored L–l filters with applications to speech pitch detection, in Proc. 1997 IEEE EURASIP Workshop Nonlinear Signal Image Process., Mackinac Island, MI, September 1997.
- 31 G. R. Arce Y. T. Kim K. E. Barner Order-statistic filtering and smoothing of time series: Part 1, in P. R. Krishnaiah (ed.), Handbook of Statistics—vol. 16: Order Statistics and Their Applications, Amsterdam: North-Holland, 1998.
- 32 K. E. Barner G. R. Arce Order-statistic filtering and smoothing of time series: Part 2, in P. R. Krishnaiah (ed.), Handbook of Statistics—vol. 16: Order Statistics and Their Applications, Amsterdam: North-Holland, 1998.
- 33 G. R. Arce T. A. Hall K. E. Barner Permutation weighted order statistic filter lattices, IEEE Trans. Image Process., 4: 1070–1083, 1995.
- 34 K. E. Barner G. R. Arce Permutation filters: A class of non-linear filters based on set permutations, IEEE Trans. Signal Proces., 42: 782–798, 1994.
- 35 K. E. Barner G. R. Arce Design of permutation order statistic filters through group colorings, IEEE Trans. Circuits Syst.-II, 44: 531–548, 1997.
- 36 R. C. Hardie K. E. Barner Extended permutation filters and their application to edge enhancement, IEEE Trans. Image Process., 5: 855–867, 1996.
- 37 R. C. Hardie K. E. Barner Rank conditioned rank selection filters for signal restoration, IEEE Trans. Image Process., 3: 192–206, 1994.
- 38 P. A. Maragos R. W. Schafer Morphological filters—part I: Their set theoretic analysis and relations to linear shift invariant filters; part II: Their relations to median, order-statistic, and stack filters, IEEE Trans. Acoust. Speech Signal Process., 35: 1153–1169, 1170–1184, 1987.
- 39 P. Salembier et al. Morphological operators for image and video compression, IEEE Trans. Image Process., 5: 881–898, 1996.
- 40 P. Maragos Differential morphology in image processing, IEEE Trans. Image Process., 5: 922–937, 1996.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: