Electroabsorption
Robert B. Welstand,
Stephen A. Pappert, Paul K. L. Yu,
Robert B. Welstand
Applied Micro Circuit Corporation, San Diego, CA
Search for more papers by this authorPaul K. L. Yu
University of California, San Diego, La Jolla, CA
Search for more papers by this authorRobert B. Welstand,
Stephen A. Pappert, Paul K. L. Yu,
Robert B. Welstand
Applied Micro Circuit Corporation, San Diego, CA
Search for more papers by this authorPaul K. L. Yu
University of California, San Diego, La Jolla, CA
Search for more papers by this authorFirst published: 27 December 1999
Abstract
The sections in this article are
- 1 Optical Communication
- 2 Modeling the Electroabsorption Modulation Transfer Curve
- 3 Conclusion
Bibliography
- 1 D. F. Blossey P. Handler Electroabsorption, in R. K. Willardson and A. C. Beer (eds.), Semiconductors and Semimetals: Modulation Techniques, New York: Academic Press, 1972.
- 2 T. R. Chung et al. 1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature, Appl. Phys. Lett., 72 (13): 1565–1566, 1998.
- 3 S. Schmitt-Rink et al. How fast is excitonic electroabsorption? Opt. Lett., 15 (1): 60–62, 1990.
- 4 N. K. Dutta et al. Frequency chirp under current modulation in InGaAsP injection lasers, J. Appl. Phys., 56 (7): 2167–2169, 1984.
- 5 J. A. J. Fells et al. Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator, Electron. Lett., 30 (14): 1168–1169, 1994.
- 6 R. C. Alferness Waveguide electrooptic modulators, IEEE Trans. Microw. Theory Tech., MTT-30: 1121–1137, 1982.
- 7 K. Noguchi H. Miyazawa O. Mitomi 75-GHz Ti:LiNbO3 Optical Modulator, in Optical Fiber Commun., 1994 OSA Tech. Dig. Series (Optical Society of America, Washington, DC), paper WB3, 1994, vol. 4, pp. 76–77.
- 8 W. Franz Einfluβ eines elektrischen Feldes auf eine optische Absorptionskante, Z. Naturforschg., 13a: 484–489, 1958.
- 9 L. V. Keldysh Zh. Eksperim i. Teor. Fiz., 34: 1138–1141, 1958 (English translation: The effect of a strong electric field on the optical properties of insulating crystals, Sov. Phys.-JETP, 7 (5): 788–790, 1958).
- 10 D. A. B. Miller et al. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effects, Phys. Rev. Lett., 53 (22): 2173–2176, 1984.
- 11 R. Dingle W. Wiegmann C. H. Henry Quantum states of confined carriers in very thin AlxGa1−xAs/GaAs/AlxGa1−x As heterostructures, Phys. Rev. Lett., 33 (14): 827–830, 1974.
- 12 G. H. Wannier The structure of electronic excitation levels in insulating crystals, Phys. Rev., 52: 191–197, 1937.
- 13 T. Ido S. Tanaka H. Inoue MQW electroabsorption modulators for 40 Gbit/s TDM systems, in Optical Fiber Commun., 1997 OSA Tech. Dig. Series (Optical Society of America, Washington, D.C.), vol. 6, paper WG5, 1997, pp. 140–141.
- 14 S. Oshiba K. Nakamra H. Horikawa High-efficiency electroabsorption modulator to generate 20 GHz-3.6 ps transform-limited optical pulses, in Optical Fiber Commun., 1997 OSA Tech. Dig. Series (Optical Society of America, Washington, D.C.), vol. 6, paper WG2, 1997, pp. 136–137.
- 15 G. Mak et al. High-speed bulk InGaAsP-InP electroabsorption modulators with bandwidth in excess of 20 GHz, IEEE Photon. Technol. Lett., 2 (10): 730–733, 1990.
- 16 T. H. Wood et al. Electric field screening by photogenerated holes in MQWs: A new mechanism for absorption saturation, Appl. Phys. Lett., 57: 1081–1083, 1990.
- 17 I. K. Czajkowski et al. Strain-compensated MQW electroabsorption modulator for increased optical power handling, Electron. Lett., 30 (11): 900–901, 1994.
- 18 F. Devaux et al. InGaAsP/InGaAsP/InAsP MQW polarization-independent modulator with high optical power saturation, in Optical Fiber Commun., 1997 OSA Tech. Dig. Series (Optical Society of America, Washington, D.C.), vol. 6, paper WG4, 1997, pp. 139–140.
- 19 G. Dresselhaus Effective mass approximation for excitons, J. Phys. Chem. Solids, 1: 14–22, 1956.
- 20 D. E. Aspnes N. Bottka Electric-field effects on the dielectric function of semiconductors and insulators, in R. K. Willardson and A. C. Beer (eds.), Semiconductors and Semimetal: Modulation Techniques, New York: Academic Press, 1972.
- 21 D. E. Aspnes Electric field effects on the dielectric constant of solids, Phys. Rev., 153 (3): 972–982, 1967.
- 22 S. Gasiorowicz Quantum Physics, New York: Wiley, 1974.
- 23 R. J. Elliot Intensity of optical absorption by excitons, Phys. Rev., 108 (6): 1384–1389, 1957.
- 24 K. Tharmalingam Optical absorption in the presence of a uniform field, Phys. Rev., 130 (6): 2204–2206, 1963.
- 25 D. A. B. Miller et al. Electric field dependence of optical absorption near the band gap of quantum-well structures, Phys. Rev. B, 32 (2): 1043–1060, 1985.
- 26 A. I. Anselm Introduction to Semiconductor Theory, Englewood Cliffs, NJ: Prentice-Hall, 1981, pp. 447–455.
- 27 D. S. Chemla D. A. B. Miller Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures, J. Opt. Soc. Am. B, 2 (7): 1155–1173, 1985.
- 28 J. M. Luttinger W. Kohn Motion of electrons and holes in perturbed periodic fields, Phys. Rev., 97 (4): 869–883, 1955.
- 29 P. Lawaetz Valence-band parameters in cubic semiconductors, Phys. Rev. B, 4 (10): 3460–3467, 1971.
- 30 D. A. B. Miller J. S. Weiner D. S. Chemla Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules, IEEE J. Quantum Electron., QE-22 (9): 1816–1830, 1986.
- 31 K. J. Williams R. D. Esman M. Dagenais Nonlinearities in p-i-n microwave photodetectors, IEEE J. Lightwave Technol., 14 (1): 84–96, 1996.
- 32 H. C. Huang S. Yee M. Soma The carrier effects on the change of refractive index for n-type GaAs at λ = 1.06, 1.3, and 1.55 μm, J. Appl. Phys., 67 (3): 1497–1503, 1990.
- 33 R. M. Knox P. P. Toulios Integrated circuits for the millimeter through optical frequency range, in Symp. Submillimeter Waves, Proc. MRI, New York: Polytechnic Press, 1970, p. 497.
- 34 A. N. Cheng Quaternary InGaAlAs/InAlAs quantum wells for 1.3 μm electro-absorption modulators, Ph.D. dissertation, Univ. California, San Diego, Chapters 3, 4, 1994.
- 35 X. S. Jiang A. R. Clawson P. K. L. Yu Study of interrupted MOVPE growth of InGaAs/InP superlattice, J. Crystal Growth, 124 (4): 547–552, 1992.
- 36 A. Y. Lew et al. Interface structure in Arsenide/Phosphide heterostructures grown by gas-source MBE and low-pressure MOVPE, J. Electron. Mater., 26 (2): 64–69, 1997.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: