Artificial Intelligence
Heikki Hyötyniemi,
Heikki Hyötyniemi
Helsinki University of Technology, Helsinki, Finland
Search for more papers by this authorHeikki Hyötyniemi,
Heikki Hyötyniemi
Helsinki University of Technology, Helsinki, Finland
Search for more papers by this authorFirst published: 27 December 1999
Abstract
The sections in this article are
- 1 Overview
- 2 Knowledge representation
- 3 Planning and problem solving
- 4 Reasoning and inference
- 5 Machine learning
- 6 Future perspectives
Bibliography
- 1 J.R. Anderson, The Architecture of Cognition. Cambridge, Massachusetts: Harvard University Press, 1983.
- 2 A. Basilevsky, Statistical Factor Analysis and Related Methods. New York: John Wiley & Sons, 1994.
- 3 D.G. Bobrow (ed.), Special volume “Artificial Intelligence in Perspective” of Artificial Intelligence, 59, (1–2), 1993.
- 4 M.A. Boden (ed.), The Philosophy of Artificial Intelligence. Oxford, UK: Oxford University Press, 1990.
- 5
M.A. Boden (ed.),
Artificial Intelligence.
San Diego, California:
Academic Press,
1996.
10.1016/B978-012161964-0/50011-X Google Scholar
- 6 R.A. Brooks, Cambrian Intelligence. Cambridge, Massachusetts: MIT Press, 1999.
- 7 A. Bundy, B. Silver, and D. Plummer, An analytical comparison of some rule-learning programs. Artificial Intelligence, 27 (2): 137–181, 1985.
- 8
C.-L. Chang and
R. Lee,
Symbolic Logic and Mechanical Theorem Proving.
New York:
Academic Press,
1973.
10.1016/B978-0-08-091728-3.50014-X Google Scholar
- 9 W.G. Chase and K.A. Ericsson, Skill and working memory. In G.H. Bower (ed.), The Psychology of Learning and Motivation. New York: Academic Press, 1982.
- 10 A. Collins and E.E. Smith (eds.), Readings in Cognitive Science—A Perspective from Psychology and Artificial Intelligence. San Mateo, California: Morgan Kaufmann Publishers, 1988.
- 11 H.L. Dreyfus and S.E. Dreyfus, Mind over Machine: The Power of Human Intuition and Expertise in the Era of the Computer. Oxford, UK: Blackwell, 1986.
- 12 H.L. Dreyfus, What Computers Still Can't Do: A Critique of Artificial Reason. Cambridge, Massachusetts: MIT Press, 1992.
- 13 R. Elio and P.B. Scharf, Modeling novice-to-expert shifts in problem-solving strategy and knowledge organization. Cognitive Science, 14: 579–639, 1990.
- 14 K.A. Ericsson and J. Smith (eds.), Towards a General Theory of Expertise. New York: Cambridge University Press, 1991.
- 15 E.A. Feigenbaum and H.A. Simon, EPAM-like models of recognition and learning. Cognitive Science, 8: 305–336, 1984.
- 16
D.H. Fisher,
M.J. Pazzani, and
P. Langley (eds.),
Concept Formation: Knowledge and Experience in Unsupervised Learning.
San Mateo, California:
Morgan Kaufmann Publishers,
1991.
10.1016/B978-1-4832-0773-5.50017-1 Google Scholar
- 17 A. Flew (ed.), A Dictionary of Philosophy, 2nd ed. London, UK: Picador, 1984.
- 18 P. Földiák, Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics, 64 (2): 165–170, 1990.
- 19 R. Forsyth (ed.), Machine Learning—Principles and Techniques. London, UK: Chapman and Hall, 1989.
- 20 S. Franklin, Artificial Minds. Cambridge, Massachusetts: MIT Press, 1995.
- 21 P. Gärdenfors, Conceptual Spaces. Cambridge, Massachusetts: MIT Press, 2000.
- 22 M. Ginsberg (ed.), Readings in Nonmonotonic Reasoning. Los Altos, California: Morgan Kaufmann Publishers, 1987.
- 23 C.G. Giraud-Carrier and T.R. Martinez, An integrated framework for learning and reasoning. Journal of Artificial Intelligence Research, 3: 147–185, 1995.
- 24 J. Glasgow and D. Papadias, Computational imagery. Cognitive Science, 16: 355–394, 1992.
- 25
F. Gobet,
Roles of pattern recognition and search in expert problem solving.
Thinking and Reasoning,
3: 291–313,
1997.
10.1080/135467897394301 Google Scholar
- 26 J.A. Groeger, Memory and Remembering. Hong Kong: Longman, 1997.
- 27 J. Haugeland (ed.), Artificial Intelligence: The Very Idea. Cambridge, Massachusetts: MIT Press, 1985.
- 28 K.J. Holyoak, Symbolic connectionism: toward third-generation the ories of expertise. In K.A. Ericsson and J. Smith (eds.), Towards a General Theory of Expertise. New York: Cambridge University Press, 1991.
- 29 H. Hyötyniemi, Mental Imagery: Unified Framework for Associative Representations. Helsinki University of Technology, Control Engineering Laboratory, Report 111, 1998. Available at http://saato014.hut.fi/hyotyniemi/publications.
- 30 H. Hyötyniemi, Neocybernetics in Biological Systems. Helsinki University of Technology, Control Engineering Laboratory, 2006.
- 31 S.A. Jackson, Connectionism and Meaning: From Truth Conditions to Weight Representations. New Jersey: Ablex Publishing, 1996.
- 32 C. Jutten and J. Herault, Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24: 1–10, 1991.
- 33 P. Kanerva, Sparse Distributed Memory. Cambridge, Massachusetts: MIT Press, 1988.
- 34 R.T. Kellogg, Cognitive Psychology. London, UK: SAGE Publications, 1995.
- 35 S.M. Kosslyn, Image and Mind. Cambridge, Massachusetts: Harvard University Press, 1980.
- 36 R. Kurzweil, The Age of Intelligent Machines. Cambridge, Massachusetts: MIT Press, 1990.
- 37
J.E. Laird,
P.S. Rosenbloom,
and
A. Newell,
Chunking in SOAR: the anatomy of a general learning mechanism.
Machine Learning,
1:
11–46,
1986.
10.1007/BF00116249 Google Scholar
- 38 D.B. Lenat, AM: Discovery in mathematics as heuristic search. In R. Davis and D.B. Lenat (eds.), Knowledge-Based Systems in Artificial Intelligence. New York: McGraw-Hill, 1980.
- 39 D.B. Lenat and R.V. Guha, Building Large Knowledge-Based Systems: Representation and Inference in the CYC Project. Reading, Massachusetts: Addison-Wesley, 1990.
- 40 T.-P. Liang and E. Turban (eds.), Expert Systems with Applications, 6 (1), 1993. Special issue on case-based reasoning and its applications.
- 41 J.R. Lucas, Minds, machines, and Gödel. Philosophy, 36, 1961.
- 42 J.M. McCarthy and P.J. Hayes, Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence, 4: 463–502, 1969.
- 43 J.M. McCarthy, Circumscription—a form of non-monotonic reasoning. Artificial Intelligence, 13: 27–39, 1980.
- 44 J. McDermott, R1: A rule-based configurer of computer systems. Artificial Intelligence, 19 (1): 39–88, 1982.
- 45 R.S. Michalski, Knowledge acquisition through conceptual clustering: A theoretical framework and algorithm for partitioning data into conjunctive concepts. International Journal of Policy Analysis and Information Systems, 4: 219–243, 1980.
- 46 M. Minsky, A Framework for representing knowledge. In P.H. Winston (ed.), The Psychology of Computer Vision. New York: McGraw-Hill, 1975.
- 47 M. Minsky, The Society of Mind. New York: Simon & Schuster, 1985.
- 48 H. Moravec, Mind Children: The Future of Robot and Human Intelligence. Cambridge, Massachusetts: MIT Press, 1988.
- 49 A. Newell and H.A. Simon, GPS, a program that simulates human thought. In E.A. Feigenbaum and J. Feldman (eds.), Computers and Thought. New York: McGraw-Hill, 1963.
- 50 B.A. Olshausen and D.J. Field, Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 37: 3311–3325, 1997.
- 51 J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, California: Morgan Kaufmann Publishers, 1988.
- 52 R. Penrose, The emperor's new mind: concerning computers, minds, and the laws of physics. Behavioral and Brain Sciences, 13 (4): 643–654.
- 53 Z. Pylyshyn, The imagery debate: analogue media versus tacit knowledge. Psychological Review, 88: 16–45, 1981.
- 54 W.V. Quine, Methods of Logic, 4th ed. Cambridge, Massachusetts: Harvard University Press, 1982.
- 55 J. Rissanen, Stochastic complexity and modeling. Annals of Statistics, 14: 1080–1100, 1986.
- 56 H. Ritter and T. Kohonen, Self-organizing semantic maps. Biological Cybernetics, 61: 241–254, 1989.
- 57 E. Rosch, Principles of categorization. In E. Rosch and B.B. Lloyd (eds.), Cognition and Categorization, Hillsdale, New Jersey: Erlbaum, 1978
- 58 S. Russell and P. Norvig, Artificial Intelligence—A Modern Approach. Englewood Cliffs, New Jersey: Prentice-Hall International, 1995.
- 59 S.J. Russell, Rationality and intelligence. Artificial Intelligence, 94 (1–2): 57–77, 1997.
- 60 J.R. Searle, Minds, brains and programs. Behavioral and Brain Sciences, 3: 417–424, 1980.
- 61 P.G. Schyns, A modular neural network model of concept acquisition. Cognitive Science, 15: 461–508, 1991.
- 62 J. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World. New York: Irwin/McGraw-Hill, 2000.
- 63 S.C. Shapiro (ed.), Encyclopedia of Artificial Intelligence, Vols. 1–2. New York: John Wiley & Sons, 1987.
- 64 G. Shafer and J. Pearl (eds.), Uncertain Reasoning. Los Altos, California: Morgan Kaufmann Publishers, 1990.
- 65 H.A. Simon, The Sciences of the Artificial, 3rd ed. Cambridge, Massachusetts: MIT Press, 1996.
- 66 E.E. Smith, C. Langston, and R.E. Nisbett, The case of rules in reasoning. Cognitive Science, 16: 1–40, 1992.
- 67 M. Stefik and S.W. Smoliar (eds.), What Computers Still Can't Do: five reviews and a response. Artificial Intelligence, 80 (1): 95–191, 1996.
- 68 N.A. Stillings, S.E. Weisler, C.H. Chase, M.H. Feinstein, J.L. Garfield, and E.L. Rissland (eds.), Cognitive Science—An Introduction, 2nd ed., Cambridge, Massachusetts: MIT Press, 1995.
- 69 D.S. Touretzky and G.E. Hinton, A distributed connectionist production system. Cognitive Science, 12: 423–466, 1988.
- 70
A. Turing,
Computing Machinery and intelligence.
Mind,
59:
433–460,
1950.
10.1093/mind/LIX.236.433 Google Scholar
- 71 N. Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine. New York: John Wiley & Sons, 1948.
- 72 P. Winston, Artificial Intelligence. Reading, Massachusetts: Addison-Wesley, 1984.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: