Magnetic Methods of Nondestructive Evaluation
Abstract
The sections in this article are
- 1 Magnetic Methods For Cracks, Corrosion Pits, or Inclusions
- 2 MAgnetic Methods For Microstructural Features
- 3 Magnetic NDE Of Residual Stress
- 4 Promising New Magnetic Techniques
Bibliography
- 1 F. W. Dunn Magnetic particle inspection fundamentals, Mater. Eval., 35: 42–47, Dec. 1977.
- 2 O. Sundstrom K. Torronen The use of Barkhausen noise analysis in nondestructive testing, Mater. Eval., 37: 51–56, Feb. 1979.
- 3 J. F. Bussiere On-line measurement of the microstructure and mechanical properties of steel, Mater. Eval., 44: 560–567, Apr. 1986.
- 4 P. Holler Nondestructive analysis of structure and stresses by ultrasonic and micromagnetic methods. In J. F. Bussiere, J. P. Monchalin, C. O. Ruud and R. E. Green, Jr., (eds.), Nondestructive Characterization of Materials II, New York: Plenum, 1987, pp. 211–225.
- 5 K. Tiitto Use of Barkhausen effect in testing for residual stresses and defects. In W. B. Young (ed.), Residual Stress in Design, Process, and Materials Selection, Metals Park OH: ASM Int’l 1987, pp. 27–36.
- 6 D. C. Jiles Review of magnetic methods for nondestructive evaluation, NDT International, 21: 311–319, 1988.
- 7 R. E. Beissner Magnetic field testing. In S. R. Lampman and T. B. Zorc (eds.), Metals Handbook, Vol. 17, Metals Park, OH: ASM Int’l, 1989, pp. 129–135.
- 8 W. L. Rollwitz Magaborption NDE. In S. R. Lampman and T. B. Zorc (eds.), Metals Handbook, Vol. 17, Metals Park, OH: ASM Int’l 1989, pp. 144–158.
- 9 H. Kwun G. L. Burkhardt Electromagnetic techniques for residual stress measurements. In S. R. Lampman and T. B. Zorc (eds.), Metals Handbook, Vol. 17, Metals Park, OH: ASM Int’l, 1989, pp. 159–163.
- 10 D. C. Jiles Review of magnetic methods of nondestructive evaluation (Part 2), NDT International, 23: 83–92, 1990.
- 11 J. Lamontanara et al. Monitoring fatigue damage in industrial steel by Barkhausen noise, Nondestr. Test. Eval., 8–9: 603–614, 1992.
- 12 D. J. Buttle T. M. Hutchings Residual stress measurement at NNDTC, Brit. J. NDT (now Insight) 34: 175–182, 1992.
- 13 M. K. Devine The magnetic detection of material properties, J. Metals, 24–30, Oct. 1992.
- 14 H. Kwun Application of magnetically induced velocity changes of ultrasonic waves for NDE of material properties, Nondestr. Test. Eval., 10: 127–136, 1992.
- 15 C. B. Scruby et al. Development of non-invasive methods for measurement of stress in welded steel structures, Eur. J. NDT, 3 (2): 46–54, 1993.
- 16 R. A. Langman P. J. Mutton Estimation of residual stresses in railway wheels by means of stress-induced magnetic anisotropy, NDT&E International, 26: 195–205, 1993.
- 17 M. J. Sablik Hysteresis modeling of the effects of stress on magnetic properties and its application to Barkhausen NDE. In Current Topics in Magnetics Research, Vol. 1, Trivandrum, India: Research Trends, 1994, pp. 45–57.
- 18 M. J. Sablik Modeling the effects of biaxial stress on magnetic properties of steels with application to biaxial stress NDE, Nondestr. Test. Eval., 12: 87–102, 1995.
- 19 M. J. Sablik D. C. Jiles Magnetic measurement of creep damage: modeling and experiment. In M. Prager and R. E. Tilley (eds.), Nondestructive Evaluation of Utilities and Pipelines, Vol. 2947, SPIE Proc., Bellingham, WA: SPIE, 1996, pp. 166–176.
- 20 J. A. Alcoz S. Nair M. J. Sablik Electromagnetic methods for stress measurement, Nondestructive Testing Handbook, Vol. 9, R. K. Stanley and P. O. Moore (eds.), Columbus, OH: ANST, 1996, pp. 421–430.
- 21 C. E. Betz Principles of Magnetic Particle Testing, Chicago: Magnaflux Corp., 1967.
- 22 P. A. Tipler Physics, New York: Worth Publishers, 1976, p. 858.
- 23 Y. F. Cheu Automatic crack detection with computer vision and pattern recognition of magnetic particle indicators, Mater. Eval., 42: 1506–1511, 1984.
- 24 F. Forster Developments in magnetography of tubes and tube welds, Nondestructive Testing, 8: 304–308, 1975.
- 25 C. H. Hastings A new type of flaw detector, ASTM Proc., 47: 651–664, 1947.
- 26 K. F. Bainton Characterizing defects by determining leakage fields, NDT International, 10: 253–257, 1977.
- 27 R. E. Beissner G. A. Matzkanin C. M. Teller NDE application of magnetic leakage field methods. SwRI Report NTIAC-80-1, NTIAC, Southwest Research Institute, San Antonio, TX, 1980.
- 28 M. J. Sablik R. E. Beissner Theory of magnetic leakage fields from prolate and oblate spheroidal inclusions, J. Appl. Phys., 53: 8437–8450, 1982.
- 29 T. A. Bubenik et al. Magnetic flux leakage (MFL) technology for natural gas pipeline inspection, Gas Research Institute Report 91-0367, GRI, Chicago, IL, 1992.
- 30 P. A. Khalileev P. A. Grigorev Methods of testing the condition of underground pipes in main pipelines, Sov. J. NDT, 10: 438–459, 1974.
- 31 N. N. Zatsepin V. E. Shcherbinin Calculation of the magnetic field of surface defects, I. Field topography of defect models, Sov. J. NDT, 2: 385–393, 1966.
- 32 V. E. Shcherbinin N. N. Zatsepin Calculation of the magnetic field of surface defects, II. Experimental verification of the principal theoretical relationships, Sov. J. NDT, 2: 394–399, 1966.
- 33 C. Edwards S. B. Palmer The magnetic field of surface breaking cracks, J. Phys. D, 19: 657–673, 1986.
- 34 J. H. Hwang W. Lord Finite element modeling of magnetic field-defect interactions, J. Test. Eval., 3:21–25, 1975.
- 35 W. Lord et al. Residual and active leakage fields around defects in ferromagnetic materials, Mater. Eval., 36: 47–54, July 1978.
- 36 D. L. Atherton W. Czura Finite element calculations on the effect of permeability variation on magnetic flux leakage signals, NDT Int., 20: 239–241, 1987.
- 37 D. L. Atherton Finite element calculations and computer measurements of magnetic flux leakage patterns for pits, Brit. J. NDT, 30: 159–162, 1988.
- 38 B. Brudar Magnetic leakage fields calculated by the method of finite differences, NDT Int., 18: 353–357, 1985.
- 39 G. Dobmann Magnetic leakage flux techniques in NDT: a state of the art survey of the capabilities for defect detection and sizing. In W. Lord (ed.), Electromagnetic Methods of NDT, New York: Gordon and Breach, 1985, pp. 71–95.
- 40 P. Holler G. Dobmann Physical analysis methods of magnetic flux leakage. In R. S. Sharpe (ed.), Res. Techniques NDT, Vol. IV, New York: Academic Press, 1980, pp. 39–69.
- 41 C. N. Owston The magnetic flux leakage technique of nondestructive testing, Brit. J. NDT, 16: 162–168, 1974.
- 42 F. Forster New findings in the fields of nondestructive magnetic field leakage inspection, NDT Int., 19: 3–14, 1986.
- 43 R. E. Beissner et al. Analysis of mechanical damage detection in gas pipeline inspection, Proc. Conf. Prop. Applic. Magnetic Materials, Illinois Institute of Technology, Chicago, IL, May 1996.
- 44 T. W. Krause et al. Variation of the stress dependent magnetic flux leakage signal with defection depth and flux density, N.D.T.&E. Int., 29: 79–86, 1996.
- 45 T. W. Krause et al. Effect of stress concentration on magnetic flux leakage signals from blind hole defects in stressed pipeline steel, Res. Nondestr. Eval., 8: 83–100, 1996.
- 46 R. E. Beissner et al. Detection and analysis of electric current perturbation caused by defects. In G. Birnbaum and G. Free (eds.), Eddy Current Characterization of Materials and Structures, ASTM ATP 722, Philadelphia: ASTM, 1981, pp. 428–446.
- 47 R. E. Beissner M. J. Sablik C. M. Teller Electric current perturbation calculations for half-penny cracks. In D. O. Thompson and D. E. Chimenti (eds.), Rev. Progr. In Quant. NDE, Vol. 2B, New York: Plenum, 1983, pp. 1237–1254.
- 48 J. A. Birdwell F. N. Kusenberger J. R. Barton Development of magnetic perturbation inspection system (A02G5005-1) for CH-46 rotor blades, P.A. No. CA375118, Technical Summary Report for Vertol Division, The Boeing Company, 1968.
- 49 J. R. Barton J. Lankford P. L. Hampton Advanced nondestructive testing methods for bearing inspection, SAE Trans., 81: 681–696, 1972.
- 50 H. Kwun C. M. Teller Nondestructive evaluation of pipes and tubes using magnetostrictive sensors, U.S. Patent No. 5,581,037 December 1996.
- 51 H. Kwun J. J. Hanley C. M. Teller Performance of a noncontact magnetostrictive AE sensor on steel rod, J. Acoust. Emission, 11: 27–31, 1993.
- 52 H. Kwun A. E. Holt Feasibility of underlagging corrosion detection in steel pipe using the magnetostrictive sensor technique, NDT&E Int., 28: 211–214, 1995.
- 53 H. Kwun J. J. Hanley Long-range, volumetric inspection of tubing using the magnetostrictive sensor technique, Proc. 4th EPRI Balance-of-Plant Heat Exchanger NDE Symposium, Jackson Hole, Wyoming, 1996.
- 54 H. Kwun C. M. Teller Detection of fractured wires in steel cables using magnetostrictive sensors, Mater. Eval., 52: 503–507, 1994.
- 55 K. A. Bartels H. Kwun J. J. Hanley Magnetostrictive sensors for the characterization of corrosion in rebars and prestressing strands. In Nondestructive Evaluation of Bridges and Highways, SPIE Conf. Proc. 2946, SPIE, Bellingham, WA, 1996, pp. 40–50.
- 56 H. Kwun Back in style: magnetostrictive sensor, Technology Today, Southwest Research Institute, San Antonio, TX, Mar. 1995, pp. 2–7.
- 57 V. G. Kuleev P. S. Kononov I. A. Telegina Electromagnetoacoustic excitation of elastic longitudinal cylindrical waves in ferromagnetic bars, Sov. J. NDT, 19: 690–698, 1983.
- 58 V. D. Boltachev et al. Electromagnetic-acoustic excitation in ferromagnetic pipes with a circular cross-section, Sov. J. NDT, 25: 434–439, 1989.
- 59 M. J. Sablik S. W. Rubin Modeling magnetostrictive generation of elastic waves in steel pipes. I. Theory, Int. J. Appl. Electromagnetics and Mechanics, submitted 1998.
- 60 H. Kwun K. A. Bartels Experimental observation of elastic waves dispersion in bounded solids of various configurations. J. Acoust. Soc. Am., 99: 962–968, 1996.
- 61 M. J. Sablik Y. Lu G. L. Burkhardt Modeling magnetostrictive generation of elastic waves in steel pipes. II. Comparison to experiment, Int. J. Appl. Electromagn. Mech. submitted 1998.
- 62 M. J. Sablik R. A. Langman Approach to the anhysteretic surface, J. Appl. Phys., 79: 6134–6136, 1996.
- 63 S. Chikazumi S. H. Charap Physics of Magnetism, Malabar, FL: R. E. Krieger Publ. Co., 1984, pp. 19–24.
- 64 M. N. Mikheev Magnetic structure analysis, Sov. J. NDT, 19: 1–7, 1983.
- 65 M. N. Mikheev et al. Interrelation of the magnetic and mechanical properties with the structural state of hardened and tempered products, Sov. J. NDT, 18: 725–732, 1983.
- 66 H. Kwun G. L. Burkhardt Effects of grain size, hardness and stress on the magnetic hysteresis loops of ferromagnetic steels. J. Appl. Phys., 61: 1576–1579, 1987.
- 67 R. Ranjan D. C. Jiles P. K. Rastogi Magnetoacoustic emission, magnetization and Barkhausen effect in decarburized steel, IEEE Trans. Magn., 22: 511–513, 1986.
- 68 R. Ranjan D. C. Jiles P. K. Rastogi Magnetic properties of decarburized steels: an investigation of the effects of grain size and carbon content, IEEE Trans. Magn., 23: 1869–1876, 1987.
- 69 Z. J. Chen et al. Assessment of creep damage of ferromagnetic material using magnetic inspection, IEEE Trans. Magn., 30: 4596–4598, 1994.
- 70 D. C. Jiles D. L. Atherton Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater., 6: 48–61, 1986.
- 71 M. J. Sablik et al. Finite element simulation of magnetic detection of creep damage at seam welds, IEEE Trans. Magn., 32: 4290–4292, 1996.
- 72 Z. J. Chen D. C. Jiles J. Kameda Estimate of fatigue exposure from magnetic coercivity, J. Appl. Phys., 75: 6975–6977, 1994.
- 73 Z. Gao et al. Variation of coercivity of ferromagnetic material during cyclic stressing, IEEE Trans. Magn., 30: 4593–4595, 1994.
- 74 L. J. Swartzendruber et al. Effect of plastic strain on magnetic and mechanical properties of ultraslow carbon sheet steel, J. Appl. Phys., 81: 4263–4265, 1997.
- 75 H. Barkhausen Two phenomena revealed with help of new amplifiers. Pzysikalischte Zeitschrift, 20: 401–403, 1919.
- 76 K. Stierstadt The magnetic Barkhausen effect. In Springer Tracts in Modern Physics, 40: 2–106, 1966 (in German).
- 77 J. C. McClure K. Schröder The magnetic Barkhausen effect, CRC Critical Reviews in Solid State Sciences, 6: 45–83, 1976.
- 78 G. A. Matzkanin R. E. Beissner C. M. Teller The Barkhausen effect and its applications to nondestructive evaluation, SWRI Report No NTIAC-79-2, 1979.
- 79 S. Segalini M. Mayos M. Putignani Application of electromagnetic methods to steel microstructure control. Memoires et Etudes Scientifique, Revue de Metallurgie, October 1985, pp. 569–575 (in French).
- 80 W. L. Vengrinovich Magnetic noise spectroscopy, In Minsk-Science, Minsk, 1991, 284 pp (in Russian).
- 81 T. Piech Technical application of Barkhausen effect, PNPS 475, ISSN 0208-7979, Technical University of Szczecin, Szczecin, 1992, 160 pp (in German).
- 82 A. Zentkova M. Datko Propagation of the electrodynamic disturbance following a Barkhausen jump in metallic ferromagnetic samples. I Infinite medium, Czech, J. Phys., B24: 310–321, 1974.
- 83 V. M. Vasiliev et al. Some computation and design problems of induction transducers for the detection of Barkhausen jumps, Defektscopiya, 2: 73–83, 1986.
- 84 B. Augustyniak Magnetomechanical effects, Rapport TEMPRA, GEMPPM, INSA de Lyon, 1995, 90 pp (in French).
- 85 J. Mackersie R. Hill A. Cowking Models for acoustic and electromagnetic Barkhausen emission. In J. Boogaard and G. M. van Dijk (eds), Non-Destr. Test. Proc. 12th World Conf., Amsterdam: Elsevier Science Publ., 1989, pp. 1515–1518.
- 86 M. M. Kwan K. Ono M. Shibata Magnetomechanical acoustic emission of ferromagnetic materials at low magnetization levels (type I behavior), J. Acoustic Emission, 3: 144–156, 1984.
- 87 M. M. Kwan K. Ono M. Tibet Magnetomechanical acoustic emission of ferromagnetic materials at low magnetization levels (type II behavior), J. Acoustic Emission, 3: 199–210, 1984.
- 88 M. Guyot T. Merceron C. Cagan Acoustic emission along the hysteresis loops of various ferro- and ferrimagnets, J. Appl. Phys., 63: 3955–3957, 1988.
- 89 B. Augustyniak Magnetomechanical emission. Acoustic Emission, J. Malecki, J. Ranachowski (eds.), IPPT-PAN Warsaw, 1994, pp. 417–445 (in Polish).
- 90 A. D. Beale et al. Micromagnetic processes in steels, Mat. Res. Soc. Symp. Proc., Materials Research Society, 1991, pp 313–318.
- 91 D. G. Hwang H. C. Kim The influence of plastic deformation on Barkhausen effects and magnetic properties in mild steel, J. Phys. D., 21: 1807–1813, 1988.
- 92 B. Alessandro et al. Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials, I. Theory, J. Appl. Phys., 68: 2901–2907, 1990.
- 93 B. Alessandro et al. Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. II. Experiments, J. Appl. Phys., 68: 2908–2915, 1990.
- 94 H. C. Kim D. G. Hwang B. K. Choi Barkhausen noise in 5% Mo-75.5% Ni permalloy with rolling texture, J. Phys. D., 21: 168–174, 1988.
- 95 B. Augustyniak Magnetomechanical effects research for their application in nondestructive evaluation of ferromagetic materials, Rapport ATP de France, Nr 717, Technical University of Gdansk, 1996 (in French).
- 96 L. Basano P. Ottonello Use of time-day correlators and wave-shaping techniques in the statistical analysis of Barkhausen pulses, J. Magn. Magn. Mater., 43: 274–282, 1994.
- 97 C. Gatelier-Rothea et al. Role of microstructural states on the level of Barkhausen noise inpure iron and low carbon iron binary alloys: Nondestructive Test. Eval., 8–9: 591–602, 1992.
- 98 D. J. Buttle et al. Magnetoacoustic and Barkhausen emission in ferromagnetic materials, Philos. Trans. R. Soc. London, A320: 363–378, 1986.
- 99 B. Augustyniak J. Degauque New approach to hysteresis process investigation using mechanical and magnetic Barkhausen effects, J. Magn. Magn. Mater., 140–144: 1837–1838, 1995.
- 100 American Stress Technologies, Inc. Stresscan 500 C operating instructions, Pittsburgh Pennsylvania, 1988.
- 101 B. Augustyniak M. Chmielewski W. Kielczynski New method of residual stress evaluation in weld seams by means of Barkhausen effect, Proc. XXIV National Conf. NDE, PTBN i DT, Poznan-Kiekrz, 1995, pp. 9–17 (in Polish).
- 102 D. C. Jiles Integrated on-line instrumentation for simultaneous automated measurements of magnetic field, induction, Barkhausen effect, magnetoacoustic emission, and magnetostriction, J. Appl. Phys., 63: 3946–3949, 1988.
- 103 A. Parakka D. C. Jiles Magnetoprobe: a portable system for non-destructive testing of ferromagnetic materials, J. Magn. Magn. Mater, 140–144: 1841–1842, 1995.
- 104 H. Sakamoto M. Okada M. Homma Theoretical analysis of Barkhausen noise in carbon steels, IEEE Trans. Magn., 23: 2236–2238, 1987.
- 105 D. J. Buttle et al. Magneto-acoustic and Barkhausen emission from domain-wall interaction with precipitates in incolay 904, Philos. Mag. A, 55: 735–756, 1987.
- 106 R. Rautioaho P. Karjalainen M. Moilanen Coercivity and power spectrum of Barkhausen noise in structural steels, J. Magn. Magn. Mater., 61: 183–192, 1986.
- 107 R. Ranjan et al. Grain size measurement using magnetic and acoustic Barkhausen noise, J. Appl. Phys., 61: 3199–3201, 1987.
- 108 S. Tiitto Magnetoelastic Barkhausen noise method for testing of residual stresses. American Stress Technologies, Inc., Pittsburgh, PA, 1989.
- 109 G. Bertotti F. Fiorillo A. Montorsi The role of grain size in the magnetization process of soft magnetic materials, J. Appl. Phys., 67: 5574–5576, 1990.
- 110 M. Komatsubara J. L. Porteseil Barkhausen noise behavior in grain oriented 3% SiFe and the effect of local strain, IEEE Trans. Magn., MAG-22: 496–498, 1986.
- 111 T. W. Krause et al. Correlation of magnetic Barkhausen noise with core loss in oriented 3% Si-Fe steel laminates, J. Appl. Phys., 79: 3156–3167, 1996.
- 112 D. J. Buttle et al. Magneto-acoustic and Barkhausen emission: their dependence on dislocations in iron, Philos. Mag. A, 55: 717–734, 1987.
- 113 A. J. Birkett et al. Influence of plastic deformation on Barkhausen power spectra in steels, J. Phys. D, 22: 1240–1242, 1989.
- 114 C. Bach K. Goebbels W. Theiner Characterization of hardening depth by Barkhausen noise measurements, Mater. Eval., 46: 1576–1580, 1988.
- 115 L. Malkinski Z. Kaczkowski B. Augustyniak Application of Barkhausen effect measurements in piezomagnetic study of metallic glasses, J. Magn. Magn. Mater., 112: 323–324, 1992.
- 116 B. Augustyniak J. Degauque Microstructure inspection by means of mechanical Barkhausen effect analysis, J. de Physique, IV, C8: 527–530, 1996.
- 117 P. Deimel et al. Bloch wall arrangement and Barkhausen noise in steels 22 NiMoCr 3 7 and 15 MnMoNiV 5 3, J. Magn. Mater., 36: 277–289, 1983.
- 118 B. Augustyniak Results of recent progress in new NDT methods of ferromagnetic materials, IFTR Reports IPPT PAN Warsaw 1996, 1/1996 (in Polish).
- 119 Z. J. Chen A. Strom D. C. Jiles Micromagnetic surface measurements for evaluation of surface modifications due to cyclic stress, IEEE Trans. Magn., 29: 3031–3033, 1993.
- 120 P. Gondi et al. Structural characteristics at surface and Barkhausen noise in AISI 4340 steel after grinding, Nondestr. Test. Eval., 10: 255–267, 1993.
- 121 W. A. Theiner V. Hauk Nondestructive characterization of shot peened surface states by the magnetic Barkhausen noise method. In J. Boogaard and G. M. van Dijk (eds.), Non-Destr. Test., Proc. 12th World Conf., Amsterdam: Elsevier, 1989, pp. 583–587.
- 122 J. C. McClure Jr. S. Bhattacharya K. Schröder Correlation of Barkhausen effect type measurements with acoustic emission in fatigue crack growth studies, IEEE Trans. Magn., MAG-10: 913–915, 1974.
- 123
S. Battacharya
K. Schröder
A new method of detecting fatigue crack propagation in ferromagnetic specimens,
J. Test. Eval.,
3:
289–291,
1975.
10.1520/JTE10657J Google Scholar
- 124 S. Nishimura K. Tokimasa Study on the residual stresses in railroad solid wheels and their effect on wheel fracture, Bull. JSME, 19: 459–468, 1976.
- 125 J. F. Shackelford B. D. Brown A critical review of residual stress technology, Intl. Adv. NDT, 15: 195–215, 1990.
- 126 R. M. Bozorth Ferromagnetism, Chap. 13, NJ: AT&T, 1978 (reprinted from 1951), pp. 595–712.
- 127 R. M. Bozorth H. J. Williams Effect of small stresses on magnetic properties, Rev. Mod. Phys., 17: 72–80, 1945.
- 128 D. J. Craik M. J. Wood Magnetization changes induced by stress in a constant applied field, J. Phys. D, 3: 1009–1016, 1970.
- 129 A. J. Moses Effect of stress on d.c. magnetization properties of permendur, Proc. IEE, 122: 761–762, 1975.
- 130 R. Langman Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength, NDT Int., 14: 255–262, 1981.
- 131 R. Langman The effect of stress on the magnetization of mild steel at moderate field strengths, IEEE Trans. Magn., 21: 1314–1320, 1985.
- 132 M. J. Sablik et al. Model for the effect of tensile and compressive stress on ferromagnetic hysteresis, J. Appl. Phys., 61: 3799–3801, 1987.
- 133 I. J. GarshelisMagnetic and magnetoelastic properties of nickel maraging steels, IEEE Trans. Magn., 26: 1981–1983, 1990.
- 134 H. Hauser P. Fulmek The effect of mechanical stress on the magnetization curves of Ni and FeSi single crystals at strong fields, IEEE Trans. Magn., 28: 1815–1825, 1992.
- 135 C. S. Schneider P. Y. Cannell K. T. Watts Magnetoelasticity for large stresses, IEEE Trans. Magn., 28: 2626–2631, 1992.
- 136 M. J. Sablik D. C. Jiles Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis, IEEE Trans. Magn., 29: 2113–2123, 1993.
- 137 M. J. Sablik et al. A model for hysteretic magnetic properties under the application of noncoaxial stress and field, J. Appl. Phys., 74: 480–488, 1993.
- 138 H. Kwun Investigation of the dependence of Barkhausen noise on stress and the angle between the stress and magnetization direction, J. Magn. Magn. Mater., 49: 235–240, 1985.
- 139 R. Langman Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength—Part 2: Biaxial stress, NDT Int., 15: 91–97, Apr. 1982.
- 140 C. S. Schneider J. M. Richardson Biaxial magnetoelasticity in steels, J. Appl. Phys., 53: 8136–8138, 1982.
- 141 D. J. Buttle et al. Comparison of three magnetic techniques for biaxial stress measurement. In D. O. Thompson and D. E. Chimenti (eds.), Rev. Progr. In Quant. NDE, Vol. 9, New York: Plenum, 1990, pp. 1879–1885.
- 142 R. Langman Magnetic properties of mild steel under conditions of biaxial stress, IEEE Trans. Magn., 26: 1246–1251, 1990.
- 143 K. Kashiwaya Fundamentals of nondestructive measurement of biaxial stress in steel utilizing magnetoelastic effect under low magnetic field, Jap. J. Appl. Phys., 30 (11A): 2932–2942, 1991.
- 144 M. J. Sablik et al. Micromagnetic model for biaxial stress effects on magnetic properties, J. Magn. Magn. Mater., 132: 131–148, 1994.
- 145 M. J. Sablik H. Kwun G. L. Burkhardt Biaxial stress effects on hysteresis and MIVC, J. Magn. Magn. Mater., 140–144: 1871–1872, 1995.
- 146 M. J. Sablik R. A. Langman A. Belle Nondestructive magnetic measurement of biaxial stress using magnetic fields parallel and perpendicular to the stress plane. In D. O. Thompson and D. E. Chimenti (eds.), Rev. Progr. In Quant. NDE, Vol. 16B, New York: Plenum, 1997, pp. 1655–1662.
- 147 M. J. Sablik A model for asymmetry in magnetic property behavior under tensile and compressive stress in steel, IEEE Trans. Magn. 33: 3958–3960, 1997.
- 148 C. S. Schneider M. Charlesworth Magnetoelastic processes in steel, J. Appl. Phys., 57: 4196–4198, 1985.
- 149 H. Hauser Energetic model of ferromagnetic hysteresis, J. Appl. Phys., 75: 2584–2597, 1994.
- 150 H, Hauser Energetic model of ferromagnetic hysteresis. 2. Magnetization calculations of (110)[001] FeSi sheets by statistic domain behavior, J. Appl. Phys., 77: 2625–2633, 1995.
- 151 I. J. Garshelis W. S. Fiegel Recovery of magnetostriction values from the stress dependence of Young’s modulus, IEEE Trans. Magn., 22: 436–438, 1986.
- 152
W. F. Brown, Jr.
Domain theory of ferromagnetics under stress, part I,
Phys. Rev.,
52:
325–334,
1937.
10.1103/PhysRev.52.325 Google Scholar
- 153
W. F. Brown, Jr.
Domain theory of ferromagnetics under stress, part II,
Phys. Rev.,
53:
482–489,
1938.
10.1103/PhysRev.53.482 Google Scholar
- 154 G. W. Smith J. R. Birchak Internal stress distribution theory of magnetomechanical hysteresis—an extension to include effects of magnetic field and applied stress, J. Appl. Phys., 40: 5174–5178, 1969.
- 155 L. Callegaro E. Puppin Rotational hysteresis model for stressed ferromagnetic films, IEEE Trans. Magn., 33: 1007–1011, 1997.
- 156 A. Bienkowski J. Kulikowski The dependence of the Villari effect in ferrites on their magnetocrystalline properties and magnetostriction, J. Magn. Magn. Mater., 26: 292–294, 1982.
- 157
E. Villari
Change of magnetization by tension and by electric current,
Ann. Phys. Chem.,
126:
87–122,
1865.
10.1002/andp.18652020906 Google Scholar
- 158 M. J. Sablik et al. A model for the effect of stress on the low frequency harmonic content of the magnetic induction in ferromagnetic materials, J. Appl. Phys., 63: 3930–3932, 1988.
- 159 Z. J. Chen et al. Improvement of magnetic interface coupling through a magnetic coupling gel, IEEE Trans. Magn., 31: 4029–4031, 1995.
- 160 R. E. Ershov M. M. Shel On stress measurement by means of the magnetoelastic method, Industrial Laboratory, 31: 1008–1011, 1965.
- 161 S. Abiku B. D. Cullity A magnetic method for the determination of residual stress, Experimental Mech., 11: 217–223, 1971.
- 162 S. Abiku Magnetic studies of residual stress in iron and steel induced by uniaxial deformation, Jap. J. Appl. Phys., 16: 1161–1170, 1977.
- 163 S. A. Musikhin V. F. Novikov V. N. Borsenko Use of coercive force as an indicator parameter in nondestructive measurement of mechanical stresses, Sov. J. NDT, 23: 633–635, 1988.
- 164 M. K. Devine Detection of stress in railroad steels via magnetic property measurements, Nondestr. Test. Eval., 11: 215–234, 1994.
- 165 H. Kwun G. L. Burkhardt Effects of stress on the harmonic content of magnetic induction in ferromagnetic material, Proc. 2nd Nat’l Seminar NDE Ferromagnetic Materials, Dresser-Atlas, Houston, TX, 1986.
- 166 H. Kwun G. L. Burkhardt Nondestructive measurement of stress in ferromagnetic steels using harmonic analysis of induced voltage, NDT Int., 20: 167–171, 1987.
- 167 G. L. Burkhardt H. Kwun Application of the nonlinear harmonics method to continuous measurement of stress in railroad rail. In D. O. Thompson and D. E. Chimenti (eds.), Rev. Progr. Quant. NDE, Vol. 7B, New York: Plenum, 1988, pp. 1413–1420.
- 168 H. Kwun G. L. Burkhardt M. E. Smith Measurement of the longitudinal stress in railroad rail under field conditions using nonlinear harmonics. In D. O. Thompson and D. E. Chimenti, (eds.), Rev. Progr. Quant. NDE, Vol. 9, New York: Plenum, 1990, pp. 1895–1903.
- 169 R. Langman Measurements of the mechanical stress in mild steel by means of rotation of magnetic field strength—part 3. Practical applications, NDT Int., 16: 59–65, 1983.
- 170 R. Langman Some comparisons between the measurement of stress in mild steel by means of Barkhausen noise and by rotation of magnetization, NDT Int., 20: 93–99, 1987.
- 171 K. Kashiwaya H. Sakamoto Y. Inoue Nondestructive measurement of residual stress using magnetic sensors, Proc. VI Intl. Congress Experimental Mech., Society for Experimental Mechanics, Bethel, CT, 1977, Vol. I, pp. 30–35.
- 172
H. Wakiwaka
M. Kobayashi
H. Yamada
Stress measurement using a magnetic anisotropy sensor utilizing ac magnetization,
IEEE Transl. J. Magn. in Japan,
6:
396–401,
1991.
10.1109/TJMJ.1991.4565174 Google Scholar
- 173
S. Kishimoto et al.
Conversion theory of magnetic anisotropy sensor,
IEEE Trans. J. Magn. in Japan,
7:
269–273,
1992.
10.1109/TJMJ.1992.4565371 Google Scholar
- 174 K. Kashiwaya Y. Inoue H. Sakamoto Development of magnetic anisotropy sensor for stress measurement of curved surface. In J. Boogaard and G. M. Van Dijk (eds.), Proc. 12th World Conf. On Non-Destructive Testing, Amsterdam: Elsevier, 1989, pp. 601–606.
- 175 H. Kwun C. M. Teller Stress dependence of magnetically induced ultrasonic shear wave velocity change in polycrystalline A-36 steel, J. Appl. Phys., 54: 4856–4863, 1983.
- 176 H. Kwun Effects of stress on magnetically induced velocity changes for ultrasonic longitudinal waves in steel, J. Appl. Phys., 57: 1555–1561, 1985.
- 177 H. Kwun A nondestructive measurement of residual bulk stresses in welded steel specimens by use of magnetically induced velocity changes for ultrasonic waves, Mater. Eval., 44: 1560–1566, 1986.
- 178 M. Namkung D. Utrata Nondestructive residual stress measurements in railroad wheels using the low-field magnetoacoustic test method. In D. O. Thompson and D. E. Chimenti (eds.), Rev. Progr. Quant. NDE, Vol. 7B, New York: Plenum, 1988, pp. 1429–1438.
- 179 M. Shibata K. Ono Magnetomechanical acoustic emission—a new method for non-destructive stress measurements, NDT Int., 14: 227–234, 1981.
- 180 G. L. Burkhardt et al. Acoustic methods for obtaining Barkhausen noise stress measurements, Mater. Eval., 40: 669–675, 1982.
- 181 R. Rautioaho P. Karjalajnen M. Moilajnen The statistical contribution of magnetic parameters to stress measurements by Barkhausen noise. In H. Fujiwara, T. Abe, and K. Tanaka (eds.), Residual Stresses-III, Science and Technology, Vol. 2, London: Elsevier, 1989, pp. 1087–1092.
- 182 D. J. Buttle et al. The measurement of stress in steels of varying microstructure by magnetoacoustic and Barkhausen emission, Proc. R. Soc. London, Ser. A, 414: 469–496, 1987.
- 183 M. Nankung et al. Uniaxial stress effects on magnetoacoustic emission. In B. R. McAvoy (ed.), Proc. IEEE 1989 Ultrasonics Symposium, Montreal 1989, Vol. 2, [IEEE 1089], pp. 1167–1170
- 184 C. Jagadish L. Clapham D. L. Atherton Influence of uniaxial elastic stress on power spectrum and pulse height distribution of surface Barkhausen noise in pipeline steel, IEEE Trans. Magn., 26: 1160–1163, 1990.
- 185 M. G. Maylin P. T. Squire The effects of stress on induction, differential permeability and Barkhausen count in a ferromagnet, IEEE Trans. Magn., 26: 3499–3501, 1993.
- 186 M. J. Sablik A model for the Barkhausen noise power as a function of applied magnetic field and stress, J. Appl. Phys., 74: 5898–5900, 1993.
- 187 M. J. Sablik B. Augustyniak The effect of mechanical stress on a Barkhausen noise signal integrated across a cycle of ramped magnetic field, J. Appl. Phys., 79: 963–972, 1996.
- 188 T. Piech Application of the Barkhausen effect to mechanical stress measurements in ferromagnetics. In E. Czoboly (ed.), Proc. 9th Congress of Materials Testing, Budapest 1986, Vol. 2, 1986, pp. 495–496.
- 189 S. Tiitto Magnetoelastic testing of biaxial stresses, Experimental Techniques, pp. 17–22, July/August 1991.
- 190 W. A. Theiner P. Deimel Non-destructive testing of welds with the 3MA-analyzer, Nucl. Eng. Design, 102: 257–264, 1987.
- 191 K. Tiitto et al. Evaluation of the stress distribution in welded steel by measurement on the Barkhausen noise level, Proc. Conf. Practical Applic. Residual Stress Technology, Indianapolis 1991, pp. 55–59.
- 192 B. Augustyniak New approach in Barkhausen effect application to residual stress evaluation, Nondestr. Testing, Polish Society for NDT, 5: 17, 1996 (in Polish).
- 193 B. Augustyniak W. Kielczynski Comparison of non-destructive methods of residual stress evaluation in weld seams, Proc. 25th Nat’l Conf. on NDT, Szczyrk 1996, PTBN&DT SIMP, Warsaw 1996, Zeszyty Problemowe, 1, 235, 1996 (in Polish).
- 194 C. Jagadish L. Clapham D. L. Atherton Effect of bias field and stress on Barkhausen noise in pipeline steels, NDT Int., 22: 297–301, 1989.
- 195 R. L. Pasley Barkhausen effect—an indication of stress, Mater. Eval., 28: 157–161, 1970.
- 196 W. A. Theiner H. H. Willems Determination of microstructural parameters by magnetic and ultrasonic quantitative NDE. In C. O. Ruud and R. E. Green, Jr., (eds.), Nondestr. Methods for Mater. Property Determination, New York: Plenum, 1984, pp. 249–258.
- 197 M. J. Sablik W. L. Rollwitz D. C. Jiles A model for magabsorption as an NDE tool for stress measurement, Proc. 17th Symp. on NDE, San Antonio, TX, NTIAC, Southwest Research Institute, San Antonio, TX, 1989, pp. 212–223.
- 198 K. Babcock et al. Magnetic force microscopy: recent advances and applications. In D. G. Demczyk, E. Garfunkel, B. M. Clemens, E. D. Williams, and J. J. Cuomo (eds.), Evol. of Thin Film and Surf. Struct. and Morphology, MRS Proceedings, Vol. 335, Pittsburgh: Materials Research Society, 1995, pp. 311–321.
- 199 A. C. Bruno C. H. Barbarosa L. F. Scavarda Electric current injection NDE using a SQUID magnetometer, Res. Nondestr. Eval., 8: 165–175, 1996.
- 200 M. Lang et al. Characterization of the fatigue behavior of austenitic steel using HTSC-SQUID, QNDE Conference, Univ. San Diego, San Diego, CA, July 1997.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: