Transmission Electron Microscopy
Brent Fultz
California Institute of Technology, Pasadena, CA, USA
Search for more papers by this authorBrent Fultz
California Institute of Technology, Pasadena, CA, USA
Search for more papers by this authorAbstract
Transmission electron microscopy (TEM) is the premier tool for understanding the internal microstructure of materials at the nanometer level. It allows one to obtain real-space images of materials with resolutions on the order of a few tenths to a few nanometers, depending on the imaging conditions, and simultaneously obtain diffraction information from specific regions in the images (e.g., small precipitates). Variations in the intensity of electron scattering across a thin specimen can be used to image strain fields, defects such as dislocations and second-phase particles, and even atomic columns in materials under certain imaging conditions.
In addition to diffraction and imaging, the high-energy electrons (usually in the range of 100 to 400 keV of kinetic energy) in TEM cause electronic excitations of the atoms in the specimen. Two important spectroscopic techniques make use of these excitations by incorporating suitable detectors into the transmission electron microscope, energy-dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS). Nanometer-scale chemical compositional analysis can be performed by using a focused electron probe. Spatial distribution of elements can be obtained by scanning the probe over the specimen, or by energy-filtered imaging, a special mode in advanced EELS spectrometer.
The recent advancements in aberration-correction technologies have improved the image resolution and probe size to sub-Ångstrom level, and current density in the probe is increased by an order, which catalyze the emergence of new contrast theories and microanalysis techniques. Many other analyses are also possible in TEM with the development of novel detectors.
Bibliography
“Transmission Electron Microscopy” in Characterization of Materials, 1st ed., Vol. 2, pp. 1063–1090, by James M. Howe, University of Virginia, Charlottesville, Virginia and Brent Fultz, California Institute of Technology, Pasadena, California; Published online: October 15, 2002, DOI: 10.1002/0471266965.com082.
Literature Cited
- Allen, L. J., McBride, W., O'Leary, N. L., and Oxley, M. P. 2004. Exit wave reconstruction at atomic resolution. Ultramicroscopy 100: 91–104, DOI: 10.1016/j.ultramic. 2004.01.012.
- Anderson, I. M., Bentley, J., and Carter, C. B. 1995. The secondary fluorescence correction for X-ray microanalysis in the analytical electron microscope. J. Microsc. 178: 226–239, DOI: 10.1111/j.1365-2818.1995.tb03600.x.
-
Ayache, J.,
Beaunier, L.,
Boumendil, J.,
Ehret, G., and
Laub, D.
2010.
Sample Preparation Handbook for Transmission Electron Micorscopy—Methodology,
Springer Science+Business Media,
New York,
DOI: 10.1007/978-0-387-98182-6.
10.1007/978‐0‐387‐98182‐6 Google Scholar
-
Ayache, J.,
Beaunier, L.,
Boumendil, J.,
Ehret, G., and
Laub, D.
2010.
Sample Preparation Handbook for Transmission Electron Micorscopy—Techniques,
Springer Science+Business Media,
New York,
DOI: 10.1007/978-1-4419-5975-1.
10.1007/978‐1‐4419‐5975‐1 Google Scholar
- Basile, D. P., Boylan, R., Hayes, K., and Soza, D. 1992. FIBX-TEM—Focused ion beam milling for TEM sample preparation. In Materials Research Society Symposium Proceedings, Vol. 254 ( R. Anderson, B. Tracy, and J. Bravman, eds.), pp. 23–41. Materials Research Society, Pittsburgh.
-
Borchardt-Ott, W.
1995.
Crystallography,
2nd ed.
Springer-Verlag,
New York.
10.1007/978-3-642-57754-3 Google Scholar
- Butler, E. P. and Hale, K. F. 1981. Dynamic experiments in the electron microscope, Vol. 9. In Practical Methods in Electron Microscopy ( A. M. Glauerl, ed.) North-Holland, New York.
- Chescoe, D. and Goodhew, P. J. 1984. The Operation of the Transmission Electron Microscope. Oxford University Press, Oxford.
- Cockayne, D. J. H., Ray, I.L.F., and Whelan, M. J. 1969. Investigations of dislocation strain fields using weak beams. Philos. Mag. 20: 1265–1270, DOI: 10.1080/14786436908228210.
- Edington, J. W. 1974. Practical Electron Microscopy in Materials Science, Vols. 1–4. Macmillan Philips Technical Library, Eindhoven.
-
Egerton, R. F.
2011.
Electron Energy-Loss Spectroscopy in the Electron Microscope,
3rd ed.
Springer Science+Business Media,
New York, DOI: 10.1007/978-1-4419-9583-4.
10.1007/978-1-4419-9583-4 Google Scholar
- Egerton, R. F. 2003. New techniques in electron energy-loss spectroscopy and energy-filtered imaging. Micron 34: 127–139, DOI: 10.1016/S0968-4328(03)00023-4.
- Fultz, B. and Howe, J. M. 2008. Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed. Springer-Verlag, Berlin.
-
Goodhew, P. J.
1984.
Specimen Preparation for Transmission Electron Microscopy of Materials.
Oxford University Press,
Oxford.
10.1016/0036-9748(84)90180-7 Google Scholar
- Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., and Urban, K. 1998a. Electron microscopy image enhanced. Nature 392: 768–769, DOI: 10.1038/33823.
- Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., and Urban, K. 1998b. A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75: 53–60, DOI: 10.1016/S0304-3991(98)00048-5.
-
Hawkes, P. W.
2007.
Aberration Correction.
In
Science of Microscopy
( P. W. Hawkes and
J. C. H. Spence, eds.), pp.
696–747.
Springer Science+Business Media,
New York, DOI: 10.1007/978-0-387-49762-4_10.
10.1007/978-0-387-49762-4_10 Google Scholar
- Head, A. K., Humble, P., Clarebrough, L. M., Morton, A. J., and Forwood, С. T. 1973. Computed Electron Micrographs and Defect Identification. North-Holland, Amsterdam, The Netherlands.
- Hirsch, P. В. Howie, A., Nicholson, R. В. Pashley D. W. and Whelan, M. J. 1977. Electron Microscopy of Thin Crystals, 2nd ed. Krieger, Malabar.
-
Hobbs, L. W.
1979.
Radiation effects in analysis of inorganic specimens by ТЕМ. In
Introduction to Analytical Electron Microcopy
( J. J. Hren,
J. I. Goldstein, and
D. C. Joy, eds.), pp.
437–480.
Plenum Press,
New York.
10.1007/978-1-4757-5581-7_17 Google Scholar
- Howe, J. M., Murray, Т. M., Csontos, A. A., Tsai, M. M., Garg, A., and Benson, W. E. 1998. Understanding interphase boundary dynamics by in situ high-resolution and energy-filtering transmission electron microscopy and real-time image simulation. Microsc. Microanal. 4: 235–247, DOI: 10.1017/S1431927698980230.
- Hsieh, W. –K., Chen, F. –R., Kai, J. –J., and Kirkland, A. I. 2004. Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98: 99–114, DOI: 10.1016/j.ultramic.2003.08.004.
- Hull, D. and Bacon, D. J. 1984. Introduction to Dislocations, 3rd ed. (see pp. 17–21). Pergamon Press, Oxford.
- Jia, C. L. and Urban, K. 2004. Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303: 2001–2004, DOI: 10.1126/science.1093617.
- Keyse, R, J. Garratt-Reeed, A. J. Goodhew, P. J. and Lorimer, G. W. 1998. Introduction to Scanning Transmission Electron Microscopy. Springer-Verlag, New York.
- Kikuchi, S. 1928. Diffraction of cathode rays by mica. Jpn. J. Phys. 5: 83–96.
- Klepeis, S. J., Benedict, J. P., and Anderson, R. M. 1988. A grinding/polishing tool for ТЕМ sample preparation. In Specimen Preparation for Transmission Electron Microscopy of Materias ( J. C. Bravman, R. M. Anderson, and M. L. McDonald, eds.), pp. 179–184. Materials Research Society, Pittsburgh.
- Krivanek, O. L., Ahn, С. С. and Keeney, R. B. 1987. Parallel detection electron spectrometer using quadrupole lenses. Ultramicroscopy 22: 103–115, DOI: 10.1016/0304-3991(87) 90054-4.
- Krivanek, O. L., Dellby, A. J., Spence, A. J., Camps, R. A., and Brown, L. M. 1997. Aberration correction in the STEM. In Institute of Physics Conference Series, Vol. 153 ( J. M. Rodenburg, ed.), pp. 35–40. Taylor & Francis, Oxford.
- Lentzen, M., Jahnen, B., Jia, C. L., Thust, A., Tillmann, K., and Ubran, K. 2002. High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92: 233–242, DOI: 10.1016/S0304-3991(02) 00139-0.
- Lentzen M. 2006. Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction. Microsc. Microanal. 12: 191–205, DOI: 10.1017/S1431927606060326.
-
McKie, D. and
McKie, C.
1986.
Essentials of Crystallography 208
Blackwell Scientific Publications,
Oxford.
10.1515/9783110836899 Google Scholar
- Miller, M. K. and Smith, G. D. W. 1989. Atom Probe Microanalysis: Principles and Applications to Materials Problems Materials Research Society Pittsburgh.
- Nockolds, C., Nasir, M. J., Cliff, G., and Lorimer, G. W. 1980. X-ray fluorescence correction in thin foil analysis and direct methods for foil thickness measurement. In Electron Microscopy and Analysis — 1979 ( T. Mulvey, ed.), pp. 417–420. The Institute of Physics, Bristol and London.
- O'Keefe, M. A., Hetherington, C. J. D., Wang, Y. C., Nelson, E. C., Turner, J. H., Kisielowski, C., Malm, J. –O., Mueller, R., Ringnalda, J., Pan, M., and Thust, A. 2001. Sub-Ångstrom high-resolution transmission electron microscopy at 300keV. Ultramicroscopy 89: 215–241, DOI: 10.1016/S0304-3991(01) 00094-8.
-
Reimer, L.
1997.
Transmission Electron Microscopy: Physics of Image Formation and Microanalysis,
4th ed.
Springer-Verlag,
New York.
10.1007/978-3-662-14824-2 Google Scholar
-
L Reimer (ed.).
1995.
Energy-Filtering Transmission Electron Microscopy.
Springer-Verlag,
Berlin.
10.1007/978-3-540-48995-5 Google Scholar
- Rioja, R. J. and Laughlin, D. E. 1977. The early stages of GP zone formation in naturally aged Al-4 wt pct Cu alloys. Metall. Trans. 8A: 1257–1261, DOI: 10. 1007/BF02643840.
- Rose, H. H. 2009a. Historical aspects of aberration correction. J. Electron Microsc. 58(3): 77–85, DOI: 10.1093/jmicro/dfp012.
- Rose, H. H. 2009b. Geometrical Charged—Particle Optics. Springer-Verlag, Berlin, DOI: 10.1007/978-3-540-85916-1.
-
Sawyer, L. C. and
Grubb, D. T.
1987.
Polymer Microscopy.
Chapman and Hall,
London.
10.1007/978-94-009-3139-8 Google Scholar
-
Schwartz, L. H. and
Cohen, J. B.
1987.
Diffraction from Materials,
2nd ed.
Springer-Verlag,
New York.
10.1007/978-3-642-82927-7 Google Scholar
- Smith, F. G. and Thomson, J. H. 1988. Optics, 2nd ed. John Wiley & Sons, Chichester, UK.
- Spence, J. C. H. and Taftø, 1983. ALCHEMI—a new technique for locating atoms in small crystals. J. Microsc.—Oxford 130: 147–154.
- Spence, J. C. H. 2003. High-Resolution Electron Microscopy, 3rd ed. Oxford University Press, Oxford.
- Susnitzky, D. W. and Johnson, K. D. 1998. Focused ion beam (FIB) milling damage formed during TEM sample preparation of silicon. In Microscopy and Microanalysis 1998 ( G. W. Bailey, K. B. Alexander, W. G. Jerome, M. G. Bond, and J. J. McCarthy, eds.), pp. 656–667. Springer-Verlag, New York.
- Thomas, G. and Goringe, M. J. 1979. Transmission Electron Microscopy of Metals. John Wiley & Sons, New York.
- Uhlemann S. and Haider, M. 1998. Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72: 109–119, DOI: 10.1016/S0304-3991(97)00102-2.
- Voelkl, E., Alexander, K. B., Mabon, J. C., O'Keefe, M.A., Postek, M. J., Wright, M. C., and Zaluzec, N. J. 1998. The DOE2000 Materials MicroCharacterization Collaboratory. In Electron Microscopy 1998, Proceedings of the 14th International Congress on Electron Microscopy ( H. A. Calderon Benavides and M. Jose Yacaman, eds.), pp. 289–299. Institute of Physics Publishing Bristol, UK
- Weatherly G. C. and Nicholson, R. B. 1968. An electron microscope investigation of the interfacial structure of semi-coherent precipitates. Philos. Mag. 17: 801–831, DOI: 10.1080/14786436808223031.
-
Williams, D. B. and
Carter, C. B.
2009.
Transmission Electron Microscopy: A Textbook for Materials Science,
2nd ed.
Springer Science+Business Media,
New York.
10.1007/978-0-387-76501-3 Google Scholar
- Zach, J. and Haider M. 1995. Aberration correction in a low voltage SEM by a multipole corrector. Nucl. Instrum. Methods Phys. Res. A363: 316–325, DOI: 10.1016/0168-9002(95) 00056-9.
-
Zandbergen, H. W. and
Van Dyck, D.
2000.
Exit wave reconstructions using through focus series of HREM images.
Microsc. Res. Tech.
49:
301–323, DOI: 10.1002/(SICI)1097-0029(20000501)49:3<301::AID-JEMT8>3.0.CO; 2-R.
10.1002/(SICI)1097-0029(20000501)49:3<301::AID-JEMT8>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- Zemlin, F., Weiss, K., Schiske, P., Kunath, W., and Herrmann, K.-H. 1978. Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3: 49–60, DOI: 10.1016/S0304-3991(78)80006-0.
Key References
Ayache, 2010. See above.
Comprehensive reference dedicated to TEM sample preparation.
Edington, 1974. See above.
Reprinted edition available from Techbooks, Fairfax, VA. Filled with examples of diffraction and imaging analyses.
Egerton, 2011. See above.
Excellent text on TEM-EELS.
Fultz and Howe, 2008. See above.
An integrated treatment of microscopy and diffraction, with emphasis on principles.
Hirsch et al, 1977. See above.
For many years, the essential text on CTEM.
Reimer, 1997. See above.
Excellent reference with emphasis on physics of electron scattering and TEM.
Shindo, D. and Hiraga, K. 1998. High Resolution Electron Microscopy for Materials Science. Springer-Verlag, Tokyo. Provides numerous high-resolution TEM images of materials.
Williams and Carter, 2009. See above.
A current and most comprehensive text on modern TEM techniques.
Internet Resources
http://www.amc.anl.gov An excellent source for TEM information on the Web in the United States. Provides access to the Microscopy ListServer and a Software Library as well as a connection to the Microscopy & Microanalysis FTP Site and Libraries plus connections in many other useful sites.
http://cime.epfl.ch A similar site based at the Ecole Polytechnique Federale de Lausanne in Switzerland that contains software and a variety of electron microscopy information.
http://www.microscopy.org Provides access to up-to-date information about the Microscopy Society of America affiliated societies, and microscopy resources that are sponsored by the society.
http://rsbweb.nih.gov/ij/ Image J- public domain software developed by W.S. Rasband, U. S. National Institutes of Health, Bethesda, Maryland, USA.