X-ray Microprobe for Fluorescence and Diffraction Analysis
Abstract
X-ray diffraction and x-ray-excited fluorescence analysis are powerful techniques for the nondestructive measurement of crystal structure and chemical composition. When a small-area x-ray microbeam is used as the probe, chemical composition, crystal structure, crystalline texture, and crystalline strain distributions can be determined. These distributions can be studied both at the surface of the sample and deep within the sample.
This article reviews the physics, advantages, and scientific applications of hard x-ray (E > 3 keV) microfluorescence and x-ray microdiffraction analysis. Because practical x-ray microbeam instruments are extremely rare, a special emphasis is placed on instrumentation, accessibility, and experimental needs which justify the use of x-ray microbeam analysis.
Bibliography
“X-Ray Microprobe for Fluorescence and Diffraction Analysis” in Characterization of Materials, 1st ed., Vol. 2, pp. 939–953, by Gene E. Ice, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Published online: October 15, 2002; DOI: 10.1002/0471266965.com076.
Literature Cited
- APS Users Meeting Workshop. 1997. Technical report: Making and using very small X-ray beams. APS, Argonne, IL.
- Bambynek, W., Crasemann, B., Fink, R. W., Freund, H. U., Mark, H., Swift, C. D., Price, R. E., and Venugopala, R. P. 1972. X-ray fluorescence yields, Auger and Coster-Kronig transition probabilities. Rev. Mod. Phys. 44: 716–313.
- Boisseau, P. 1986. Determination of three dimensional trace element distributions by the use of monochromatic X-ray microbeams. Ph.D. dissertation. Massachusetts Institute of Technology, Cambridge, MA.
- Budai, J. D., Yang, W. G., Tamura, N., Chung, J. S., Tischler, J. Z., Larson, B. C., Ice, G. E., Park, C., Norton, D. P. 2003. X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates. Nat. Mater. 2: 487–492.
- Brennan, S., Tompkins, W., Takaura, N., Pianetta, P., Laderman, S. S., Fischer-Colbrie, A., Kortright, J. B., Madden, M. C., and Wherry, D. C. 1994. Wide band-pass approaches to total-reflection X-ray fluorescence using synchrotron radiation. Nucl. Instrum. Methods A 347: 417–421.
- Buras, B., and Tazzari, S. 1984. European Synchrotron Radiation Facility Report of European Synchrotron Radiation Project. Cern LEP Division, Geneva, Switzerland.
- Busing, W. R., and Levy, H. A. 1967. Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Crystallogr. 22: 457–464.
- Cambell, J. L. 1990. X-ray spectrometers for PIXE. Nucl. Instrum. Methods B 49: 115–125.
- Campbell, J. R., Lamb, R. D., Leigh, R. G., Nickel, B. G., and Cookson, J. A. 1985. Effects of random surface roughness in PIXE analysis of thick targets. Nucl. Instrum. Methods B 12: 402–412.
- Chevallier, P., Dhez, P., Legrand, F., Irko, A., Agafonov, Y., Pan-chenko, L. A., and Yakshin, A. 1996. The LURE-IMT photon microprobe. J. Trace Microprobe Techn. 14: 517–540.
- Chung, J. S. 1997. Automated indexing of wide-band-pass Laue images. APS Users Meeting Workshop on Making and Using Very Small X-ray Beams. APS, Argonne, IL.
- Chung, J. S., and Ice, G. E. 1999. Automated indexing for texture and strain measurement with broad-bandpass X-ray microbeams. J. Appl. Phys. 86: 5249–5256.
- Donovan, J. J., Lowers, H. A., and Rusk, B. G. 2011. Improved electron probe microanalysis oftrace elements in quartz. Am. Miner. 96: 274–282.
- Doyle, B. L., Walsh, D. S., and Lee, S. R. 1991. External micro-ion-beam analysis (X-MIBA). Nucl. Instrum. Methods B 54: 244–257.
- Elisabeth, E., Adriana, F., and Falkenberg, G. 2011. Confocal MXRF in environmental applications. Anal. Bioanal. Chem. 400: 1743–1750.
- Goldstein, J. I. 1979. Principles of thin film x-ray microanalysis. In Introduction to Analytical Electron Microscopy, ( J. J. Hern, J. I. Goldstein and D. C. Joy, eds.) pp. 83–120. Plenum, New York.
- Hoffman, S. A., Thiel, D. J., and Bilderback, D. H. 1994. Applications of single tapered glass capillaries-submicron X-ray imaging and Laue diffraction. Opt. Eng. 33: 303–306.
- Howells, M. R., and Hastings, J. B. 1983. Design considerations for an X-ray microprobe. Nucl. Instrum. Methods 208: 379–386.
- Ice, G. E. 1987. Microdiffraction with synchrotron radiation. Nucl. Instrum. Methods B 24/25: 397–399.
- Ice, G. E., and Thompson, A. 1996. CMT for new applications. LBNL Computed Microtomography Workshop, Berkeley CA, August 12–13 1996.
-
Ice, G. E.
1997.
Microbeam-forming methods for synchrotron radiation.
X-ray Spectrom.
26:
315–326.
10.1002/(SICI)1097-4539(199711/12)26:6<315::AID-XRS229>3.0.CO;2-N CAS Web of Science® Google Scholar
- Ice, G. E., and Sparks, C. J., Jr., 1984. Focusing optics for a synchrotron X-radiation microprobe. Nucl. Instrum. Methods 222: 121–127.
- Ice, G. E., and Sparks, C. J. 1990. Mosaic crystal X-ray spectrometer to resolve inelastic background from anomalous scattering experiments. Nucl. Instrum. Methods A 291: 110–116.
- Ice, G. E., Chung, J. S., Lowe, W., Williams, E., Edelman, J. 2000. Small-displacement monochromator for microdiffraction experiments. Rev. Sci. Inst. 71: 2001–2006.
- Ice, G. E., Pang, J. W. L., Larson, B. C., Budai, J. D., Tischler, J. Z., Choi, J.-Y., Liu, W., Liu, C., Assoufid, L., Shu, D. and Khounsary, A. 2009. At the limit of polychromatic microdiffraction. Mater. Sci, Eng. A, 524: 3–9.
- Jones, K. W., and Gordon, B. M. 1989. Trace element determinations with synchrotron-induced X-ray emission. Anal. Chem. 61: 3341A–56A.
- Kunz, M., Tamura, N., Chen, K., MacDowell, A. A., Celestre, R. S., Church, M. M., Fakra, S., Domning, E. E., Glossinger, J. M. Kirschman, J. L., Morrison, G. Y., Plate, D. W., Smith, B. V., Warwick, T., Yashchuck, V. V., Padmore, H. A., and Ustundag, E. 2009. A dedicated superbend x-ray microdiffraction beamline for materials, geo- and environmental sciences at the advanced light source. Rev. Sci. Instrum. 80: 035108.
- Koumelis, C. N., Londos, C. A., Kavogli, Z. I., Leventouri, D. K., Vassilikou, A. B., and Zardas, G. E. 1982. On a mosaic graphite spectrometer without collimators. Can. J. Phys. 60: 1241–1246.
- Lachance, G. R., and Claisse, F. 1995. Quantitative X-ray Fluorescence Analysis: Theory and Application. John Wiley & Sons, New York.
- Langevelde, F. V., Tros, G. H. J., Bowen, D. K., and Vis, R. D. 1990. The synchrotron radiation microprobe at the SRS, Daresbury (UK) and its applications. Nucl. Instrum. Methods B 49: 544–550.
- Larson, B. C., Yang, W., Ice, G. E., Budai, J. D., Tischler, J. Z. 2002. Three-dimensional x-ray structural microscopy with submicrometre resolution. Nature 415: 887–890.
- Letard, I., Tucoulou, R., Bleuet, P., Martinez-Criado, G., Somogyi, A., Vincze, L., Morese, J., and Susini, J. 2006. Multielement Si(Li) detector for the hard x-ray microprobe at ID22 (ESRF) Rev. Sci. Instrum. 77: 063705.
- Lindh, U. 1990. Micron and submicron nuclear probes in biomedicine. Nucl. Instrum. Methods B 49: 451–464.
- Liu, W. J., Ice, G. E., Tischler, J. Z., Khounsary, A., Liu, C., Assoufid, L., and Macrander, A. T. 2005. Short focal length Kirkpatrick-Baez mirrors for a hard X-ray nanoprobe. Rev. Sci. Instrum. 76: 11701.
- Liu, C. A., Conley, R., Ian, J., Kewish, C. M., Macrander, A. T., Maser, J., Kang, H. C., Yan, H., Stephenson, G. B. 2007. Bonded multilayer Laue lens for focusing hard X-rays. Nucl. Instrum. Methods A 582: 123–125.
- Marcus, M. A., MacDowell, A. A., Isaacs, E. D., Evans-Lutterodt, K., and Ice, G. E. 1996. Submicron resolution X-ray strain measurements on patterned films: Some hows and whys. Mater. Res. Soc. Symp. 428: 545–556.
- Materlik, G., Sparks, C. J., and Fischer, K. 1994. Resonant Anomalous X-ray Scattering. North Holland Publishers, Amsterdam, The Netherlands.
- Michael, J. R., and Goehner, R. P. 1993. Crystallographic phase identification in scanning electron microscope: Backscattered electron Kikuchi patterns imaged with a CCD-based detector. MSA Bull. 23: 168–175.
-
Miller, M. K.,
Cerezo, A.,
Hetherington, M. G., and
Smith, G. D. W.
1996.
Atom Probe Field Ion Microscopy.
Oxford Science Publications,
Oxford.
10.1093/oso/9780198513872.001.0001 Google Scholar
- Mimura H., Handa, S., Kimura, T., Yumoto, H., Yamakawa, D., Yokoyama, H., Matsuyama, S., Inagaki, K., Yamamura, K., Sano, Y., Tamasaku, K., Nishino, Y., Yabashi, M., Ishikawa, T. and Yamauchi, K. 2010. Breaking the 10 nm barrier in hard-X-ray focusing. Nature Physics 6: 122–125.
- Myers, B. F., Montogmery, F. C., and Partain, K. E. 1986. The transport of fission products in SiC. Doc. No. 909055, GA Technologies, General Atomics, San Diego.
- Naghedolfeizi, M., Chung, J. S., and Ice, G. E. 1998. X-ray fluorescence microtomography on a SiC nuclear fuel ball. Mater. Res. Soc. Symp. 524: 233–240.
- Noyan, I. C., Kaldor, S. K., Wang, P. C., and Jordan-Sweet, J. 1999. A cost-effective method for minimizing the sphere-of-confusion error of x-ray microdiffractometers. Rev. Sci. Instrum. 70: 1300–1304.
- Perry, D. L., and Thompson, A. C. 1994. Synchrotron induced X-ray fluorescence microprobe studies of the copper-lead sulfide solution interface. Am. Chem. Soc. Abstr. 208: 429.
- Pinheiro, T., Ynsa, M. D., and Alves, L. C. 2007. Imaging biological structures with a proton microprobe. Modern Research and Educational Topics in Microscopy ed. Méndez-Vilas and J. Díaz 237–244.
- Poulsen, H. F. 2004. Three-Dimensional X-ray diffraction microscopy—mapping polycrystals and their dynamics. Springer Tracts Mod. Phys. 205: 1–5.
- Poulsen, H. F., Ludwig, W., and Schkmidt, S. 2008. 3D X-ray diffraction microscopy. In Neutrons and Synchrotron Radiation in Engineering Materials Science. Wiley-VCH, Weinheim, pp. 335–352.
- Rebonato, R., Ice, G. E., Habenschuss, A., and Bilello, J. C. 1989. High-resolution microdiffraction study of notch-tip deformation in Mo single crystals using X-ray synchrotron radiation. Philos. Mag. A 60: 571–583.
- Ren, S. X., Kenik, E. A., Alexander. K. B., and Goyal, A. 1998. Exploring spatial resolution in electron back-scattered diffraction (CEBSD) experiments via Monte Carlo simulation. Microstruc. Microanal. 4: 15–22.
- Riekel, C. 1992. Beamline for microdiffraction and micro small angle scattering. SPIE 1740: 181–190.
-
Schwartz, A. J.,
Kumar, M., and
Adams, B. L.
2000.
Electron Backscatter Diffraction in Materials Science.
Kluwer Academic,
New York, NY.
10.1007/978-1-4757-3205-4 Google Scholar
-
Shenoy, G. K.,
Viccaro, P. J., and
Mills, D. M.
1988.
Characteristics of the 7 GeV advanced photon source: A guide for users. ANL-88-9 Argonne
National Laboratory,
Argonne, IL.
10.2172/5214286 Google Scholar
- Snigirev, A., Kohn, V., Snigireva, I., and Legeler, B. 1996. A compound refractive lens for focusing high-energy X-rays. Nature (London) 384: 49–51.
- Snigirev, A., Snigireva, I., Bosecke, P., Lequien, S., and Schelokov, I. 1997. High energy X-ray phase contrast microscopy using a circular Bragg–Fresnel lens. Opt. Commun. 135: 378–384.
-
Sparks, C. J., Jr.,
1980.
X-ray fluorescence microprobe for chemical analysis.
In
Synchrotron Radiation Research
( H. Winick and
S. Doniach, eds.)
pp. 459–512.
Plenum,
New York.
10.1007/978-1-4615-7998-4_14 Google Scholar
- Sparks, C. J., Kumar, R., Specht, E. D., Zschack, P., Ice, G. E., Shiraishi, T., and Hisatsune, K. 1992. Effect of powder sample granularlity on fluorescent intensity and on thermal parameters in X-ray diffraction Rietveld analysis. Adv. X-ray Anal. 35: 57–62.
- Sobiech, M., Wohlschlogel, M., Welzel, U., Mittemeijer, E. J., Hugel, W., Seekamp, A., Liu, W., Ice, G. E. 2009. Local submicron, strain gradients as the cause of Sn whisker growth. Appl. Phys. Lett 94: 221901.
- Tang, M. T., Song, Y. F., Yin, G. C., Chen, F. R., Chen, J. H., Chen, Y. M., Liang, K. S., Duewer, F., Yun, W. B. 2007. Hard X-ray microscopy with sub 30 nm spatial resolution. Synch. Rad. Inst. AIP Conf. Proc. 879: 1274–1277.
- Thompson, A. C., Chapman, K. L., Ice, G. E., Sparks, C. J., Yun, W., Lai, B., Legnini, D., Vicarro, P. J., Rivers, M. L., Bilderback, D. H., and Thiel, D. J. 1992. Focusing optics for a synchrotron-based X-ray microprobe. Nucl. Instrum. Methods A 319: 320–325.
- Veigele, W. J., Briggs, E., Bates, L., Henry, E. M., and Bracewell, B. 1969. X-ray Cross Section Compilation from 0.1 keV to 1 MeV. Kaman Sciences Report No. DNA 2433F
- Vincze, L., Vekemans, B., Frank, E. B., Gerald, F., Rickers, K., Somogyi, A., Kersten, M., and Adams, F. 2004. Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging. Anal. Chem. 76: 6786–6791.
- Wang, P. C., Cargill, G. S., Noyan, I. C., Liniger, E. G., Hu, C. K., and Lee, K. Y. 1996. X-ray microdiffraction for VLSI. Mater. Res. Soc. Symp. Proc. 427: 35.
- Wang, P. C., Cargill, G. S., III, Noyan, I. C., Liniger, E. G., Hu, C. K., and Lee, K. Y. 1997. Thermal and electromigration strain distributions in 10 μm-wide aluminum conductor lines measured by x-ray microdiffraction. Mater. Res. Soc. Symp. Proc. 473: 273.
- Wenk, H. R., Heidelbach, F., Chadeigner, D., and Zontone, F. 1997. Laue orientation imaging. J. Synchrotron Rad. 4: 95–101.
- Woll, A. R., Mass, J., Bisulca, C., Huang, R., Bilderback, D. H., Gruner, S., and Gao, N. 2006. Development of confocal X-ray Fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl. Phys. A DOI: 10.1007/s00339-006-3513-4
- Yaakobi, B., and Turner, R. E. 1979. Focusing X-ray spectrograph for laser fusion experiments. Rev. Sci. Instrum. 50: 1609–1611.
Key References
Chevallier and Dhez, 1997. See above.
Recent overview of x-ray microbeam science and hardware.
Chung and Ice, 1999. See above.
Derives the mathematical basis for white-beam microdiffraction measurements of the deviatoric and absolute strain tensor and includes a description of the ORDEX program, which automatically indexes multiple overlapping Laue patterns.
Ice, 1997. See above.
Recent overview of x-ray focusing optics for x-ray microprobes with methods for comparing the efficiency of various x-ray focusing optics.
Sparks, 1980. See above.
Quantitative comparison of x-ray microfluorescence analysis to electron and proton microprobes.