Oxetanes and Thietanes
Oliver L. Symes
Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, UK
Search for more papers by this authorHikaru Ishikura
Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, UK
Search for more papers by this authorJames A. Bull
Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, UK
Search for more papers by this authorOliver L. Symes
Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, UK
Search for more papers by this authorHikaru Ishikura
Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, UK
Search for more papers by this authorJames A. Bull
Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, UK
Search for more papers by this authorAbstract
Oxetanes are increasingly utilized in ring systems in drug discovery but are yet to be fully validated in synthetic drugs. Thietanes, at different oxidation levels, are less explored and also offer considerable potential. Both possess attractive properties for medicinal chemists including high polarity, marked three-dimensionality, and low molecular weight. Commonly deployed to modulate physicochemical properties of candidates, these small, polar units also present a valuable design element for drug discovery. This chapter will outline the structural and physicochemical properties of oxetane and thietane rings, highlighting information pertinent to medicinal chemists and the potential of the rings as bioisosteres. Through selected case studies, this chapter will then explore the application of oxetanes and thietanes in recent drug discovery campaigns (2017–2023) and medicinal chemistry research. The range of general synthetic strategies used to incorporate the four-membered rings will also be considered.
References
- 1Gwinn, W.D. (1955). Information pertaining to molecular structure, as obtained from the microwave spectra of molecules of the asymmetric rotor type. Discuss. Faraday Soc. 19: 43–51. doi: 10.1039/DF9551900043.
10.1039/df9551900043 Google Scholar
- 2Blake, T.A. and Xantheas, S.S. (2006). Structure, vibrational spectrum, and ring puckering barrier of cyclobutane. J. Phys. Chem. A 110 (35): 10487–10494. doi: 10.1021/jp062472r.
- 3Chan, S.I., Zinn, J., and Gwinn, W.D. (1961). Trimethylene oxide. II. structure, vibration-rotation interaction, and origin of potential function for ring-puckering motion. J. Chem. Phys. 34 (4): 1319–1329. doi: 10.1063/1.1731739.
- 4Luger, P. and Buschmann, J. (1984). Oxetane: the first X-ray analysis of a nonsubstituted four-membered ring. J. Am. Chem. Soc. 106 (23): 7118–7121. doi: 10.1021/ja00335a041.
- 5Holan, G., Kowala, C., and Wunderlich, J.A. (1973). X-Ray determination of the structure of a new insecticide, 2,2-di-(p-ethoxyphenyl)-3,3-dimethyloxetan. J. Chem. Soc. Chem. Commun. 221 (2): 34. doi: 10.1039/C39730000034.
10.1039/c39730000034 Google Scholar
- 6Karakida, K. and Kuchitsu, K. (1975). Molecular structure of trimethylene sulfide as studied by gas electron diffraction with joint use of rotational constants. Bull. Chem. Soc. Jpn. 48 (6): 1691–1695. doi: 10.1246/bcsj.48.1691.
- 7Searles, S. and Tamres, M. (1951). Hydrogen bond formation with saturated cyclic ethers. J. Am. Chem. Soc. 73 (8): 3704–3706. doi: 10.1021/ja01152a041.
- 8Shaw, R.A., Smithson, T.L., and Wieser, H. (1983). The ring-puckering vibration of 3-methyl thietan. J. Mol. Struct. 102 (1–2): 199–202. doi: 10.1016/0022-2860(83)80018-0.
- 9Harris, D.O., Harrington, H.W., Luntz, A.C. et al. (1966). Microwave spectrum, vibration-rotation interaction, and potential function for the ring-puckering vibration of trimethylene sulfide. J. Chem. Phys. 44 (9): 3467–3480. doi: 10.1063/1.1727251.
- 10Harrington, H.W. (1966). Out-of-plane bending frequencies in trimethylene sulfide from microwave intensity measurements. J. Chem. Phys. 44 (9): 3481–3485. doi: 10.1063/1.1727251.
- 11Wiberg, K.B. (1986). The concept of strain in organic chemistry. Angew. Chem. Int. Ed. Eng. 25 (4): 312–322. doi: 10.1002/anie.198603121.
- 12Bach, R.D. and Dmitrenko, O. (2004). Strain energy of small ring hydrocarbons. Influence of CH bond dissociation energies. J. Am. Chem. Soc. 126 (13): 4444–4452. doi: 10.1021/ja036309a.
- 13Pell, A.S. and Pilcher, G. (1965). Measurements of heats of combustion by flame calorimetry: Part 3. - Ethylene oxide, trimethylene oxide, tetrahydrofuran and tetrahydropy. Trans. Faraday Soc. 61: 71–77. doi: 10.1039/TF9656100071.
- 14Eigenmann, H.K., Golden, D.M., and Benson, S.W. (1973). Revised group additivity parameters for the enthalpies of formation of oxygen-containing organic compounds. J. Phys. Chem. 77 (13): 1687–1691. doi: 10.1021/j100632a019.
- 15Bevan, J.W., Legon, A.C., and Millen, D.J. (1974). Tilts, bends, and twists of methylene groups in four-membered rings. Evidence from the microwave spectrum of trimethylene sulphoxide. J. Chem. Soc., Chem. Commun. 16: 659–660. doi: 10.1039/C39740000659.
10.1039/c39740000659 Google Scholar
- 16Francisco, K.R. and Ballatore, C. (2022). Thietanes and derivatives thereof in medicinal chemistry. Curr. Top. Med. Chem. 22 (15): 1219–1234. doi: 10.2174/1568026622666220511154228.
- 17Brandon, M., Tamres, M., and Searles, S. (1960). The iodine complexes of some saturated cyclic ethers. I. The visible region. J. Am. Chem. Soc. 82 (9): 2129–2134. doi: 10.1021/ja01494a010.
- 18West, R., Powell, D.L., Lee, M.K.T. et al. (1964). Hydrogen bonding studies. IX. The thermodynamics of hydrogen bonding of phenol to ethers and related compounds. J. Am. Chem. Soc. 86 (16): 3227–3229. doi: 10.1021/ja01070a005.
- 19Besseau, F., Laurence, C., and Berthelot, M. (1994). Hydrogen-bond basicity of esters, lactones and carbonates. J. Chem. Soc. Perkin Trans. 2 2 (3): 485–489. doi: 10.1039/P29940000485.
10.1039/p29940000485 Google Scholar
- 20Besseau, F., Luçon, M., Laurence, C. et al. (1998). Hydrogen-bond basicity pKHB scale of aldehydes and ketones. J. Chem. Soc. Perkin Trans. 2 1998 (1): 101–107. doi: 10.1039/A704427E.
10.1039/a704427e Google Scholar
- 21Le Questel, J.Y., Laurence, C., Lachkar, A. et al. (1992). Hydrogen-bond basicity of secondary and tertiary amides, carbamates, ureas and lactams. J. Chem. Soc. Perkin Trans. 2 2 (12): 2091–2094. doi: 10.1039/P29920002091.
10.1039/p29920002091 Google Scholar
- 22Berthelot, M., Besseau, F., and Laurence, C. (1998). The hydrogen-bond basicity pKHB scale of peroxides and ethers. Eur. J. Org. Chem. 1998 (5): 925–931. doi: 10.1002/(sici)1099-0690(199805)1998:5%3C925::aid-ejoc925%3E3.0.co;2-f.
10.1002/(SICI)1099-0690(199805)1998:5<925::AID-EJOC925>3.0.CO;2-F Google Scholar
- 23Zhou, P., Tian, F., Lv, F. et al. (2009). Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins 76 (1): 151–163. doi: 10.1002/prot.22327.
- 24Francuski, B.M., Novaković, S.B., and Bogdanović, G.A. (2011). Electronic features and hydrogen bonding capacity of the sulfur acceptor in thioureido-based compounds. Experimental charge density study of 4-methyl-3-thiosemicarbazide. CrystEngComm 13 (10): 3580–3591. doi: 10.1039/C0CE00760A.
- 25Van Bergen, L.A.H., Alonso, M., Palló, A. et al. (2016). Revisiting sulfur H-bonds in proteins: the example of peroxiredoxin AhpE. Sci. Rep. 6 (1): 1–11. doi: 10.1038/srep30369.
- 26Dubois, M.A.J., Croft, R.A., Ding, Y. et al. (2021). Investigating 3,3-diaryloxetanes as potential bioisosteres through matched molecular pair analysis. RSC Med. Chem. 12 (12): 2045–2052. doi: 10.1039/D1MD00248A.
- 27Saejong, P., Rojas, J.J., Denis, C. et al. (2023). Synthesis of oxetane and azetidine ethers as ester isosteres by Brønsted acid catalysed alkylation of alcohols with 3-aryl-oxetanols and 3-aryl-azetidinols. Org. Biomol. Chem. 21 (27): 5553–5559. doi: 10.1039/D3OB00731F.
- 28Chalyk, B., Grynyova, A., Filimonova, K. et al. (2022). Unexpected isomerization of oxetane-carboxylic acids. Org. Lett. 24 (26): 4722–4728. doi: 10.1021/acs.orglett.2c01402.
- 29Rojas, J.J., Torrisi, E., Dubois, M.A.J. et al. (2022). Oxetan-3-ols as 1,2-bis-electrophiles in a Brønsted-acid-catalyzed synthesis of 1,4-dioxanes. Org. Lett. 24 (12): 2365–2370. doi: 10.1021/acs.orglett.2c00568.
- 30Liu, S., Zang, Y., Huang, H. et al. (2020). In(OTf)3-catalyzed synthesis of 2,3-dihydro-1 H-benzo[ e]indoles and 2,3-dihydrobenzofurans via [3 + 2] annulation. Org. Lett. 22 (21): 8219–8223. doi: 10.1021/acs.orglett.0c02729.
- 31Zhang, R., Guo, W., Duan, M. et al. (2019). Asymmetric desymmetrization of oxetanes for the synthesis of chiral tetrahydrothiophenes and tetrahydroselenophenes. Angew. Chem. Int. Ed. 58 (50): 18055–18060. doi: 10.1002/anie.201910917.
- 32Nair, V., Nair, S.M., Mathai, S. et al. (2004). The Rh(II) catalyzed reaction of diethyl diazomalonate with thietanes: a facile synthesis of tetrahydrothiophene derivatives via sulfonium ylides. Tetrahedron Lett. 45 (29): 5759–5762. doi: 10.1016/j.tetlet.2004.05.062.
- 33Lacharity, J.J., Fournier, J., Lu, P. et al. (2017). Total synthesis of unsymmetrically oxidized nuphar thioalkaloids via copper-catalyzed thiolane assembly. J. Am. Chem. Soc. 139 (38): 13272–13275. doi: 10.1021/jacs.7b07685.
- 34Didier, D. and Reiners, F. (2021). Uncommon four-membered building blocks – cyclobutenes, azetines and thietes. Chem. Rec. 21 (5): 1144–1160. doi: 10.1002/tcr.202100011.
- 35Burkhard, J.A., Wuitschik, G., Rogers-Evans, M. et al. (2010). Oxetanes as versatile elements in drug discovery and synthesis. Angew. Chem. Int. Ed. 49 (48): 9052–9067. doi: 10.1002/anie.200907155.
- 36Carreira, E.M. and Fessard, T.C. (2014). Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chem. Rev. 114 (16): 8257–8322. doi: 10.1021/cr500127b.
- 37Bull, J.A., Croft, R.A., Davis, O.A. et al. (2016). Oxetanes: recent advances in synthesis, reactivity, and medicinal chemistry. Chem. Rev. 116 (19): 12150–12233. doi: 10.1021/acs.chemrev.6b00274.
- 38Rogers-Evans, M., Knust, H., Plancher, J.M. et al. (2014). Adventures in drug-like chemistry space: from oxetanes to spiroazetidines and beyond! Chimia 68 (7–8): 492. doi: 10.2533/chimia.2014.492.
- 39de Sá Alves, F.R., Couñago, R.M., and Laufer, S. (2020). Chemical space exploration of oxetanes. Int. J. Mol. Sci. 21 (21): 8199. doi: 10.3390/ijms21218199.
- 40Bauer, M.R., Di Fruscia, P., Lucas, S.C.C. et al. (2021). Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Med. Chem. 12 (4): 448–471. doi: 10.1039/D0MD00370K.
- 41Rojas, J.J. and Bull, J.A. (2022). Oxetanes and oxetenes: monocyclic. In: Comprehensive Heterocyclic Chemistry IV (ed. D.S. Black, J. Cossy and C.V. Stevens), 212–256. Elsevier Science.
10.1016/B978-0-12-818655-8.00162-1 Google Scholar
- 42Rojas, J.J. and Bull, J.A. (2023). Oxetanes in drug discovery campaigns. J. Med. Chem. 66 (18): 12697–12709. doi: 10.1021/acs.jmedchem.3c01101.
- 43Huang, G., Hucek, D., Cierpicki, T. et al. (2023). Applications of oxetanes in drug discovery and medicinal chemistry. Eur. J. Med. Chem. 261: 115802. doi: 10.1016/j.ejmech.2023.115802.
10.1016/j.ejmech.2023.115802 Google Scholar
- 44Wuitschik, G., Carreira, E.M., Wagner, B. et al. (2010). Oxetanes in drug discovery: structural and synthetic insights. J. Med. Chem. 53 (8): 3227–3246. doi: 10.1021/jm9018788.
- 45Lassalas, P., Oukoloff, K., Makani, V. et al. (2017). Evaluation of oxetan-3-ol, thietan-3-ol, and derivatives thereof as bioisosteres of the carboxylic acid functional group. ACS Med. Chem. Lett. 8 (8): 864–868. doi: 10.1021/acsmedchemlett.7b00212.
- 46Francisco, K.R., Varricchio, C., Paniak, T.J. et al. (2021). Structure property relationships of N-acylsulfonamides and related bioisosteres. Eur. J. Med. Chem. 218: 113399. doi: 10.1016/j.ejmech.2021.113399.
- 47Wuitschik, G., Rogers-Evans, M., Müller, K. et al. (2006). Oxetanes as promising modules in drug discovery. Angew. Chem. Int. Ed. 45 (46): 7736–7739. doi: 10.1002/anie.200602343.
- 48Barnes-Seeman, D., Jain, M., Bell, L. et al. (2013). Metabolically stable tert-butyl replacement. ACS Med. Chem. Lett. 4 (6): 514–516. doi: 10.1021/ml400045j.
- 49Mukherjee, P., Pettersson, M., Dutra, J.K. et al. (2017). Trifluoromethyl oxetanes: synthesis and evaluation as a tert-butyl isostere. ChemMedChem 12 (19): 1574–1577. doi: 10.1002/cmdc.201700333.
- 50Wuitschik, G., Rogers-Evans, M., Buckl, A. et al. (2008). Spirocyclic oxetanes: synthesis and properties. Angew. Chem. Int. Ed. 47 (24): 4512–4515. doi: 10.1002/anie.200800450.
- 51Burkhard, J.A., Wuitschik, G., Plancher, J.M. et al. (2013). Synthesis and stability of oxetane analogs of thalidomide and lenalidomide. Org. Lett. 15 (17): 4312–4315. doi: 10.1021/ol401705a.
- 52Eriksson, T., Bjöurkman, S., Roth, B. et al. (1995). Stereospecific determination, chiral inversion in vitro and pharmacokinetics in humans of the enantiomers of thalidomide. Chirality 7 (1): 44–52. doi: 10.1002/chir.530070109.
- 53McLaughlin, M., Yazaki, R., Fessard, T.C. et al. (2014). Oxetanyl peptides: novel peptidomimetic modules for medicinal chemistry. Org. Lett. 16 (16): 4070–4073. doi: 10.1021/ol501590n.
- 54Powell, N.H., Clarkson, G.J., Notman, R. et al. (2014). Synthesis and structure of oxetane containing tripeptide motifs. Chem. Commun. 50 (63): 8797–8800. doi: 10.1039/C4CC03507K.
- 55Möller, G.P., Müller, S., Wolfstädter, B.T. et al. (2017). Oxetanyl amino acids for peptidomimetics. Org. Lett. 19 (10): 2510–2513. doi: 10.1021/acs.orglett.7b00745.
- 56Roesner, S., Beadle, J.D., Tam, L.K.B. et al. (2020). Development of oxetane modified building blocks for peptide synthesis. Org. Biomol. Chem. 18 (28): 5400–5405. doi: 10.1039/D0OB01208D.
- 57Roesner, S., Saunders, G.J., Wilkening, I. et al. (2019). Macrocyclisation of small peptides enabled by oxetane incorporation. Chem. Sci. 10 (8): 2465–2472. doi: 10.1039/C8SC05474F.
- 58Burkhard, J.A., Wagner, B., Fischer, H. et al. (2010). Synthesis of azaspirocycles and their evaluation in drug discovery. Angew. Chem. Int. Ed. 49 (20): 3524–3527. doi: 10.1002/anie.200907108.
- 59Croft, R.A., Mousseau, J.J., Choi, C. et al. (2018). Lithium-catalyzed thiol alkylation with tertiary and secondary alcohols: synthesis of 3-sulfanyl-oxetanes as bioisosteres. Chem. Eur. J. 24 (4): 818–821. doi: 10.1002/chem.201705576.
- 60Ellis, B.D., Milligan, J.C., White, A.R. et al. (2018). An oxetane-based polyketide surrogate to probe substrate binding in a polyketide synthase. J. Am. Chem. Soc. 140 (15): 4961–4964. doi: 10.1021/jacs.7b11793.
- 61Duncton, M.A.J., Estiarte, M.A., Tan, D. et al. (2008). Preparation of aryloxetanes and arylazetidines by use of an alkyl-aryl Suzuki coupling. Org. Lett. 10 (15): 3259–3262. doi: 10.1021/ol8011327.
- 62Stepan, A.F., Karki, K., McDonald, W.S. et al. (2011). Metabolism-directed design of oxetane-containing arylsulfonamide derivatives as γ-secretase inhibitors. J. Med. Chem. 54 (22): 7772–7783. doi: 10.1021/jm200893p.
- 63Stepan, A.F., Kauffman, G.W., Keefer, C.E. et al. (2013). Evaluating the differences in cycloalkyl ether metabolism using the design parameter “lipophilic metabolism efficiency” (LipMetE) and a matched molecular pairs analysis. J. Med. Chem. 56 (17): 6985–6990. doi: 10.1021/jm4008642.
- 64Li, X.Q., Grönberg, G., Bangur, E.H. et al. (2019). Metabolism of strained rings: glutathione S-transferase–catalyzed formation of a glutathione-conjugated spiro-azetidine without prior bioactivation. Drug Metab. Dispos. 47 (11): 1247–1256. doi: 10.1124/dmd.119.088658.
- 65Li, X.Q., Hayes, M.A., Grönberg, G. et al. (2016). Discovery of a novel microsomal epoxide hydrolase–catalyzed hydration of a spiro oxetane. Drug Metab. Dispos. 44 (8): 1341–1348. doi: 10.1124/dmd.116.071142.
- 66Toselli, F., Fredenwall, M., Svensson, P. et al. (2017). Oxetane substrates of human microsomal epoxide hydrolase. Drug Metab. Dispos. 45 (8): 966–973. doi: 10.1124/dmd.117.076489.
- 67Toselli, F., Fredenwall, M., Svensson, P. et al. (2019). Hip to be square: oxetanes as design elements to alter metabolic pathways. J. Med. Chem. 62 (16): 7383–7399. doi: 10.1021/acs.jmedchem.9b00030.
- 68Barnych, B., Singh, N., Negrel, S. et al. (2020). Development of potent inhibitors of the human microsomal epoxide hydrolase. Eur. J. Med. Chem. 193: 112206. doi: 10.1016/j.ejmech.2020.112206.
- 69Kaur, N. (2023). Oxetane Synthesis. Elsevier.
- 70Ishikura, H. and Bull, J.A. (2024). Recent advances in the synthesis of 3,3-disubstituted oxetanes. In: Advances in Heterocyclic Chemistry, vol. 144 (ed. E.F.V. Scriven and C.A. Ramsden), 159–209. Academic Press.
- 71Crawford, J.J., Johnson, A.R., Misner, D.L. et al. (2018). Discovery of GDC-0853: a potent, selective, and noncovalent Bruton's tyrosine kinase inhibitor in early clinical development. J. Med. Chem. 61 (6): 2227–2245. doi: 10.1021/acs.jmedchem.7b01712.
- 72Wang, X., Barbosa, J., Blomgren, P. et al. (2017). Discovery of potent and selective tricyclic inhibitors of Bruton's tyrosine kinase with improved druglike properties. ACS Med. Chem. Lett. 8 (6): 608–613. doi: 10.1021/acsmedchemlett.7b00103.
- 73Crawford, J.J. and Zhang, H. (2019). Discovery and development of non-covalent, reversible Bruton's tyrosine kinase inhibitor fenebrutinib (GDC-0853). In: Complete Accounts of Integrated Drug Discovery and Development: Recent Examples from the Pharmaceutical Industry Volume 2, vol. 1332 (ed. A.J. Pesti, A.F. Abdel-Magid and R. Vaidyanathan), 239–266. American Chemical Society.
- 74Kawahata, W., Asami, T., Kiyoi, T. et al. (2021). Discovery of AS-1763: a potent, selective, noncovalent, and orally available inhibitor of Bruton's tyrosine kinase. J. Med. Chem. 64 (19): 14129–14141. doi: 10.1021/acs.jmedchem.1c01279.
- 75Owens, T.D., Brameld, K.A., Verner, E.J. et al. (2022). Discovery of reversible covalent Bruton's tyrosine kinase inhibitors PRN473 and PRN1008 (Rilzabrutinib). J. Med. Chem. 65 (7): 5300–5316. doi: 10.1021/acs.jmedchem.1c01170.
- 76Hopkins, B.T., Bame, E., Bajrami, B. et al. (2022). Discovery and preclinical characterization of BIIB091, a reversible, selective BTK inhibitor for the treatment of multiple sclerosis. J. Med. Chem. 65 (2): 1206–1224. doi: 10.1021/acs.jmedchem.1c00926.
- 77Blomgren, P., Chandrasekhar, J., Di Paolo, J.A. et al. (2020). Discovery of lanraplenib (GS-9876): a once-daily spleen tyrosine kinase inhibitor for autoimmune diseases. ACS Med. Chem. Lett. 11 (4): 506–513. doi: 10.1021/acsmedchemlett.9b00621.
- 78Zheng, X., Gao, L., Wang, L. et al. (2019). Discovery of ziresovir as a potent, selective, and orally bioavailable respiratory syncytial virus fusion protein inhibitor. J. Med. Chem. 62 (13): 6315–6329. doi: 10.1021/acs.jmedchem.9b00654.
- 79Zheng, X., Liang, C., Wang, L. et al. (2018). Discovery of benzoazepinequinoline (BAQ) derivatives as novel, potent, orally bioavailable respiratory syncytial virus fusion inhibitors. J. Med. Chem. 61 (22): 10228–10241. doi: 10.1021/acs.jmedchem.8b01394.
- 80Griffith, D.A., Edmonds, D.J., Fortin, J.P. et al. (2022). A small-molecule oral agonist of the human glucagon-like peptide-1 receptor. J. Med. Chem. 65 (12): 8208–8226. doi: 10.1021/acs.jmedchem.1c01856.
- 81Brameld, K.A., Kuhn, B., Reuter, D.C. et al. (2008). Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J. Chem. Inf. Model. 48 (1): 1–24. doi: 10.1021/ci7002494.
- 82Zhang, Z., Pan, H., Guo, L. et al. (2024). Design and evaluation of 3-phenyloxetane derivative agonists of the glucagon-like peptide-1 receptor. J. Med. Chem. 67 (17): 14820–14839. doi: 10.1021/acs.jmedchem.4c01177.
- 83Brea, O., Buck, J., Carson, N. et al. (2024). Development of the synthetic route to PF-06878031 part 1: selective alkylation route. Org. Process. Res. Dev. 28 (7): 2433–2445. doi: 10.1021/acs.oprd.4c00053.
- 84Brown, M.S., Buck, J., Critcher, D.J. et al. (2024). Development of the synthetic route to PF-06878031 part 2: amide reduction route. Org. Process. Res. Dev. 28 (7): 2446–2461. doi: 10.1021/acs.oprd.4c00054.
- 85Pei, Z., Blackwood, E., Liu, L. et al. (2013). Discovery and biological profiling of potent and selective mTOR inhibitor GDC-0349. ACS Med. Chem. Lett. 4 (1): 103–107. doi: 10.1021/ml3003132.
- 86Yang, H., Zhao, J., Zhao, M. et al. (2020). GDC-0349 inhibits non-small cell lung cancer cell growth. Cell Death Dis. 11 (11): 1–13. doi: 10.1038/s41419-020-03146-w.
- 87Kalgutkar, A.S., Vaz, A.D.N., Lame, M.E. et al. (2005). Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab. Dispos. 33 (2): 243–253. doi: 10.1124/dmd.104.001735.
- 88Kung, P.P., Bingham, P., Brooun, A. et al. (2018). Optimization of orally bioavailable enhancer of zeste homolog 2 (EZH2) inhibitors using ligand and property-based design strategies: identification of development candidate (R)-5,8-dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (PF-06821497). J. Med. Chem. 61 (3): 650–665. doi: 10.1021/acs.jmedchem.7b01375.
- 89Kung, P.P., Rui, E., Bergqvist, S. et al. (2016). Design and synthesis of pyridone-containing 3,4-dihydroisoquinoline-1(2H)-ones as a novel class of enhancer of zeste homolog 2 (EZH2) inhibitors. J. Med. Chem. 59 (18): 8306–8325. doi: 10.1021/acs.jmedchem.6b00515.
- 90Ashcroft, C.P., Berne, A.M., Blasberg, F. et al. (2024). Development of a cost-efficient process toward a key synthetic intermediate of the EZH2 inhibitor PF-06821497. Org. Process. Res. Dev. 28 (6): 2260–2268. doi: 10.1021/acs.oprd.3c00477.
- 91Aurich, H.G. (1964). Zum mechanismus der autoxydation von nitrilen in gegenwart von basen. Tetrahedron Lett. 5 (12): 657–658. doi: 10.1016/0040-4039(64)83021-5.
10.1016/0040-4039(64)83021-5 Google Scholar
- 92Heinrich, M.C., Griffith, D., McKinley, A. et al. (2012). Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin. Cancer Res. 18 (16): 4375–4384. doi: 10.1158/1078-0432.CCR-12-0625.
- 93Lasater, E.A., Lin, K.C., Wang, Q. et al. (2014). Crenolanib is a selective type I pan-FLT3 inhibitor. Proc. Natl. Acad. Sci. USA 111 (14): 5319–5324. doi: 10.1073/pnas.1320661111.
- 94Li, D., Sloman, D.L., Achab, A. et al. (2022). Oxetane promise delivered: discovery of long-acting IDO1 inhibitors suitable for Q3W oral or parenteral dosing. J. Med. Chem. 65 (8): 6001–6016. doi: 10.1021/acs.jmedchem.1c01670.
- 95Annis, D.A., Nickbarg, E., Yang, X. et al. (2007). Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr. Opin. Chem. Biol. 11 (5): 518–526. doi: 10.1016/j.cbpa.2007.07.011.
- 96 Pfizer Inc (2024). Pfizer oncology hosts innovation day, highlighting fully integrated organization, robust portfolio, and strategic priorities to drive long-term sustainable growth. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-oncology-hosts-innovation-day-highlighting-fully (accessed 15 June 2024).
- 97Shi, W., Jiang, Z., He, H. et al. (2018). Discovery of 3,3′-spiro[azetidine]-2-oxo-indoline derivatives as fusion inhibitors for treatment of RSV infection. ACS Med. Chem. Lett. 9 (2): 94–97. doi: 10.1021/acsmedchemlett.7b00418.
- 98Yung-Chi, C. and Prusoff, W.H. (1973). Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22 (23): 3099–3108. doi: 10.1016/0006-2952(73)90196-2.
- 99Schütz, A.P., Osawa, S., Mathis, J. et al. (2012, 2012). Exploring the ribose sub-pocket of the substrate-binding site in Escherichia coli IspE: structure-based design, synthesis, and biological evaluation of cytosines and cytosine analogues. Eur. J. Org. Chem. 17: 3278–3287. doi: 10.1002/ejoc.201200296.
10.1002/ejoc.201200296 Google Scholar
- 100Zhao, W., Wang, B., Liu, Y. et al. (2020). Design, synthesis, and biological evaluation of novel 4H-chromen-4-one derivatives as antituberculosis agents against multidrug-resistant tuberculosis. Eur. J. Med. Chem. 189: 112075. doi: 10.1016/j.ejmech.2020.112075.
- 101Felts, A.S., Bollinger, K.A., Brassard, C.J. et al. (2019). Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg. Med. Chem. Lett. 29 (1): 47–50. doi: 10.1016/j.bmcl.2018.11.017.
- 102Xu, J. (2020). Recent synthesis of thietanes. Beilstein J. Org. Chem. 16 (1): 1357–1410. doi: 10.3762/bjoc.16.116.
- 103Xu, J. (2020). Synthesis of thietanes from saturated three-membered heterocycles. Asian J. Org. Chem. 9 (7): 1008–1017. doi: 10.1002/ajoc.202000219.
- 104Hamberg, M., Svensson, J., and Samuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 72 (8): 2994–2998. doi: 10.1073/pnas.72.8.2994.
- 105Gunatilaka, A.A.L., Ramdayal, F.D., Sarragiotto, M.H. et al. (1999). Synthesis and biological evaluation of novel paclitaxel (Taxol) D-ring modified analogues. J. Organomet. Chem. 64 (8): 2694–2703. doi: 10.1021/jo982095h.
- 106Mercklé, L., Dubois, J., Place, E. et al. (2001). Semisynthesis of D-ring modified taxoids: novel thia derivatives of docetaxel. J. Organomet. Chem. 66 (15): 5058–5065. doi: 10.1021/jo015539+.
- 107Smyth, E.M. (2010). Thromboxane and the thromboxane receptor in cardiovascular disease. Clin. Lipidol. 5 (2): 209–219. doi: 10.2217/clp.10.11.
- 108Nakahata, N. (2008). Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol. Ther. 118 (1): 18–35. doi: 10.1016/j.pharmthera.2008.01.001.
- 109Ohuchida, S., Hamanaka, N., and Hayashi, M. (1983). Synthesis of thromboxane A2 analogs–2. (±)-Thiathromboxane A2. Tetrahedron 39 (24): 4263–4268. doi: 10.1016/S0040-4020(01)88649-X.
- 110Fujioka, M., Nagao, T., and Kuriyama, H. (1986). Actions of the novel thromboxane A2 antagonists, ONO-1270 and ONO-3708, on smooth muscle cells of the guinea-pig basilar artery. Naunyn Schmiedeberg's Arch. Pharmacol. 334 (4): 468–474. doi: 10.1007/BF00569388.
- 111Narumiya, S., Okuma, M., and Ushikubi, F. (1986). Binding of a radioiodinated 13-azapinane thromboxane antagonist to platelets: correlation with antiaggregatory activity in different species. Br. J. Pharmacol. 88 (2): 323–331. doi: 10.1111/j.1476-5381.1986.tb10208.x.
- 112Moriyama, T., Takamura, H., Narita, H. et al. (1988). Elevation of cytosolic free Ca2+ is directly evoked by thromboxane A2 in human platelets during activation with collagen. J. Biochem. 103 (6): 901–902. doi: 10.1093/oxfordjournals.jbchem.a122383.
- 113Saito, S., Yamasaki, K., Yamada, S. et al. (1991). A stable analogue of thromboxane A2, 9,11-epithio-11,12-methanothromboxane A2, stimulates bone resorption in vitro and osteoclast-like cell formation in mouse marrow culture. Bone Miner 12 (1): 15–23. doi: 10.1016/0169-6009(91)90118-J.
- 114Fukuo, K., Morimoto, S., Koh, E. et al. (1986). Effects of prostaglandins on the cytosolic free calcium concentration in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 136 (1): 247–252. doi: 10.1016/0006-291X(86)90901-0.
- 115Kawahara, Y., Fukuzaki, H., Kaibuchi, K. et al. (1986). Activation of protein kinase C by the action of 9,11-epithio-11,12-methano-thromboxane A2 (STA2), a stable analogue of thromboxane A2, in human platelets. Thromb. Res. 41 (6): 811–818. doi: 10.1016/0049-3848(86)90379-8.
- 116Sessa, W.C., Halushka, P.V., Okwu, A. et al. (1990). Characterization of the vascular thromboxane A2/prostaglandin endoperoxide receptor in rabbit aorta. Regulation by dexamethasone. Circ. Res. 67 (6): 1562–1569. doi: 10.1161/01.RES.67.6.1562.
- 117Mais, D.E., Saussy, D.L., Chaikhouni, A. et al. (1985). Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2 receptors in platelets and blood vessels: evidence for different receptors. J. Pharmacol. Exp. Ther. 233 (2): 418–424.
- 118Futaki, N., Arai, I., Hamasaka, Y. et al. (1993). Selective inhibition of NS-398 on prostanoid production in inflamed tissue in rat carrageenan-air-pouch inflammation. J. Pharm. Pharmacol. 45 (8): 753–755. doi: 10.1111/j.2042-7158.1993.tb07103.x.
- 119 World Health Organization (2019). World Health Organization Model List of Essential Medicines, 21st List, License: CC BY-NC-SA 3.0 IGO.
- 120Wani, M.C., Taylor, H.L., Wall, M.E. et al. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93 (9): 2325–2327. doi: 10.1021/ja00738a045.
- 121Boge, T.C., Hepperle, M., Vander Velde, D.G. et al. (1999). The oxetane conformational lock of paclitaxel: structural analysis of d-secopaclitaxel. Bioorg. Med. Chem. Lett. 9 (20): 3041–3046. doi: 10.1016/S0960-894X(99)00521-1.
- 122Nakamura, H., Hasegawa, S., Shimada, N. et al. (1986). The X-ray structure determination of oxetanocin. J. Antibiotics 39 (11): 1626–1629. doi: 10.7164/antibiotics.39.1626.
- 123Hoshino, H., Shimizu, N., Shimada, N. et al. (1987). Inhibition of infectivity of human immunodeficiency virus by oxetanocin. J. Antibiotics 40 (7): 1077–1078. doi: 10.7164/antibiotics.40.1077.
- 124Choo, H., Chen, X., Yadav, V. et al. (2006). Synthesis and anti-HIV activity of d- and l-thietanose nucleosides. J. Med. Chem. 49 (5): 1635–1647. doi: 10.1021%2Fjm050912h.
- 125Grosse, S., Tahri, A., Raboisson, P. et al. (2022). From oxetane to thietane: extending the antiviral spectrum of 2′-spirocyclic uridines by substituting oxygen with sulfur. ACS Med. Chem. Lett. 13 (12): 1879–1884. doi: 10.1021/acsmedchemlett.2c00372.
- 126De Clercq, E. and Li, G. (2016). Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 29 (3): 695–747. doi: 10.1128/cmr.00102-15.
- 127Jonckers, T.H.M., Lin, T.I., Buyck, C. et al. (2010). 2′-Deoxy-2′-spirocyclopropylcytidine revisited: a new and selective inhibitor of the hepatitis C virus NS5B polymerase. J. Med. Chem. 53 (22): 8150–8160. doi: 10.1021/jm101050a.
- 128Jonckers, T.H.M., Vandyck, K., Vandekerckhove, L. et al. (2014). Nucleotide prodrugs of 2′-deoxy-2′-spirooxetane ribonucleosides as novel inhibitors of the HCV NS5B polymerase. J. Med. Chem. 57 (5): 1836–1844. doi: 10.1021/jm4015422.
- 129Ami, E.I. and Ohrui, H. (2021). Intriguing antiviral modified nucleosides: a retrospective view into the future treatment of COVID-19. ACS Med. Chem. Lett. 12 (4): 510–517. doi: 10.1021/acsmedchemlett.1c00070.
- 130Biswas, H.S. and Wategaonkar, S. (2009). Nature of the N–H⋯S hydrogen bond. J. Phys. Chem. A 113 (46): 12763–12773. doi: 10.1021/jp907658w.
- 131Tan, L., Yu, J.T., and Tan, L. (2012). The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J. Neurol. Sci. 323 (1): 1–8. doi: 10.1016/j.jns.2012.08.005.
- 132Credille, C.V., Dick, B.L., Morrison, C.N. et al. (2018). Structure-activity relationships in metal-binding pharmacophores for influenza endonuclease. J. Med. Chem. 61 (22): 10206–10217. doi: 10.1021/acs.jmedchem.8b01363.
- 133Jacobsen, J.A., Fullagar, J.L., Miller, M.T. et al. (2011). Identifying chelators for metalloprotein inhibitors using a fragment-based approach. J. Med. Chem. 54 (2): 591–602. doi: 10.1021/jm101266s.
- 134Dick, B.L. and Cohen, S.M. (2018). Metal-binding isosteres as new scaffolds for metalloenzyme inhibitors. Inorg. Chem. 57 (15): 9538–9543. doi: 10.1021/acs.inorgchem.8b01632.
- 135Ciechanover, A. and Schwartz, A.L. (1998). The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc. Natl. Acad. Sci. USA 95 (6): 2727. doi: 10.1073%2Fpnas.95.6.2727.
- 136Tanaka, K. (2009). The proteasome: overview of structure and functions. Proc. Jpn. Acad., Ser. B. 85 (1): 12. doi: 10.2183/pjab.85.12.
- 137Okazuka, K. and Ishida, T. (2018). Proteasome inhibitors for multiple myeloma. Jpn. J. Clin. Oncol. 48 (9): 785–793. doi: 10.1093/jjco/hyy108.
- 138Han, L.-Q., Yuan, X., Wu, X.-Y. et al. (2017). Urea-containing peptide boronic acids as potent proteasome inhibitors. Eur. J. Med. Chem. 125: 925–939. doi: 10.1016/j.ejmech.2016.10.023.
- 139Wang, H., Wu, Z., Cao, Y. et al. (2023). Exploration of novel four-membered-heterocycle constructed peptidyl proteasome inhibitors with improved metabolic stability for cancer treatment. Bioorg. Chem. 138: 106626. doi: 10.1016/j.bioorg.2023.106626.
- 140Ranson, M., Hammond, L.A., Ferry, D. et al. (2002). ZD 1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J. Clin. Oncol. 20 (9): 2240–2250. doi: 10.1200/JCO.2002.10.112.
- 141Yun, C.H., Boggon, T.J., Li, Y. et al. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11 (3): 217–227. doi: 10.1016/j.ccr.2006.12.017.
- 142Zhao, F., Lin, Z., Wang, F. et al. (2013). Four-membered heterocycles-containing 4-anilino-quinazoline derivatives as epidermal growth factor receptor (EGFR) kinase inhibitors. Bioorg. Med. Chem. Lett. 23 (19): 5385–5388. doi: 10.1016/j.bmcl.2013.07.049.
- 143Wu, G. and Morris, S.M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J. 336 (1): 1–17. doi: 10.1042/bj3360001.
- 144Bronte, V., Serafini, P., Mazzoni, A. et al. (2003). L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24 (6): 301–305. doi: 10.1016/s1471-4906(03)00132-7.
10.1016/S1471-4906(03)00132-7 Google Scholar
- 145Caldwell, R.W., Rodriguez, P.C., Toque, H.A. et al. (2018). Arginase: a multifaceted enzyme important in health and disease. Physiol. Rev. 98 (2): 641–665. doi: 10.1152/physrev.00037.2016.
- 146Ilies, M., Di Costanzo, L., Dowling, D.P. et al. (2011). Binding of α,α-disubstituted amino acids to arginase suggests new avenues for inhibitor design. J. Med. Chem. 54 (15): 5432–5443. doi: 10.1021/jm200443b.
- 147Van Zandt, M.C., Whitehouse, D.L., Golebiowski, A. et al. (2013). Discovery of (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid and congeners as highly potent inhibitors of human arginases I and II for treatment of myocardial reperfusion injury. J. Med. Chem. 56 (6): 2568–2580. doi: 10.1021/jm400014c.
- 148Van Zandt, M.C., Jagdmann, G.E., Whitehouse, D.L. et al. (2019). Discovery of N-substituted 3-amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic acids as highly potent third-generation inhibitors of human arginase i and II. J. Med. Chem. 62 (17): 8164–8177. doi: 10.1021/acs.jmedchem.9b00931.
- 149Mitcheltree, M.J., Li, D., Achab, A. et al. (2020). Discovery and optimization of rationally designed bicyclic inhibitors of human arginase to enhance cancer immunotherapy. ACS Med. Chem. Lett. 11 (4): 582–588. doi: 10.1021/acsmedchemlett.0c00058.
- 150Lu, M., Zhang, H., Li, D. et al. (2021). Structure-based discovery of proline-derived arginase inhibitors with improved oral bioavailability for immuno-oncology. ACS Med. Chem. Lett. 12 (9): 1380–1388. doi: 10.1021/acsmedchemlett.1c00195.
- 151Mitsui, Y., Tsuboi, M., and Iitaka, Y. (1969). The crystal structure of dl-proline hydrochloride. Acta Cryst. 25: 2182. doi: 10.1107/S0567740869005449.
- 152DeRider, M.L., Wilkens, S.J., Waddell, M.J. et al. (2002). Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J. Am. Chem. Soc. 124 (11): 2497–2505. doi: 10.1021/ja0166904.
- 153Li, D., Zhang, H., Lyons, T.W. et al. (2021). Comprehensive strategies to bicyclic prolines: applications in the synthesis of potent arginase inhibitors. ACS Med. Chem. Lett. 12 (11): 1678–1688. doi: 10.1021/acsmedchemlett.1c00258.
- 154Bissantz, C., Kuhn, B., and Stahl, M. (2010). A medicinal chemist's guide to molecular interactions. J. Med. Chem. 53 (14): 5061–5084. doi: 10.1021/jm100112j.