Abstract
Phosphatases are enzymes that catalyze the hydrolysis of a phosphate monoester, or, in other words, the phosphoryl transfer from an ester substrate to water. Some phosphatases, utilizing a binuclear metal center, accomplish this reaction in a single step. Others, some of which also utilize two-metal ion catalysis and some of which do not, first form a phosphoenzyme intermediate, which is hydrolyzed by attack of water in a second step. Protein-tyrosine phosphatases utilize a conserved cysteine residue and form a phosphocysteine intermediate. Alkaline phosphatases utilize two zinc ions and form a phosphoserine intermediate. The protein serine/threonine phosphatases and the purple acid phosphatases have a dinuclear metal center and catalyze the direct transfer of the phosphoryl group to a metal-coordinated hydroxide. A number of phosphatases have been found capable of catalyzing other hydrolysis reactions, such as those of sulfate esters, or of phosphate and phosphonate diesters. Such so-called promiscuous activities arise from the ability of the enzymes to stabilize a trigonal bipyramidal transition state, which is common to the reaction of its native substrate as well as the alternate substrates.
References
- 1 C. Lad, N. H. Williams, and R. Wolfenden, Proc. Natl. Acad. Sci. U. S. A. 100, 5607–5610 (2003).
- 2 R. D. Guthrie and W. P. Jencks, Acc. Chem. Res. 22, 343–349 (1989).
- 3 W. W. Cleland and A. C. Hengge, Chem. Rev. 106, 3252–3278 (2006).
- 4 A. C. Hengge, Adv. Phys. Org. Chem. 40 49–108 (2005).
- 5 D. Herschlag and W. P. Jencks, J. Am. Chem. Soc. 111, 7579–7586 (1989).
- 6 A. J. Kirby and A. G. Varvoglis, J. Am. Chem. Soc. 89, 415–423 (1967).
- 7 J. E. Coleman, Annu Rev Biophys Biomol Struct 21, 441–483 (1992).
- 8 K. M. Holtz and E. R. Kantrowitz, FEBS Lett. 462 (1–2), 7–11 (1999).
- 9 P. J. O'Brien and D. Herschlag, Biochemistry 41, 3207–3225 (2002).
- 10 E. E. Kim and H. W. Wyckoff, J. Mol. Biol. 218, 449–464 (1991).
- 11 K. M. Holtz, B. Stec, and E. R. Kantrowitz, J. Biol. Chem. 274, 8351–8354 (1999).
- 12 J. G. Zalatan, T. D. Fenn, and D. Herschlag, J Mol Biol 384, 1174–1189 (2008).
- 13 P. J. O'Brien and D. Herschlag, J. Am. Chem. Soc. 121, 11022–11023 (1999).
- 14 J. G. Zalatan, T. D. Fenn, A. T. Brunger, and D. Herschlag Biochemistry 45, 9788–9803 (2006).
- 15 D. J. Rigden, Biochem. J. 409, 333–348 (2008).
- 16 K. Ostanin, E. H. Harms, P. E. Stevis, R. Kuciel, M. M. Zhou, and R. L. Van Etten, J. Biol. Chem. 267, 22830–22836 (1992).
- 17 Y. Lindqvist, G. Schneider, and P. Wihko, Eur. J. Biochem. 221, 139–142 (1994).
- 18 E. Ortlund, M. W. LaCount, and L. Lebioda, Biochemistry 42, 383–389 (2003).
- 19 K. Ostanin and R. L. Van Etten, J. Biol. Chem. 268, 20778–20784 (1993).
- 20 D. C. Lee, M. A. Cottrill, C. W. Forsberg, and Z. Jia. J. Biol. Chem. 278, 31412–31418 (2003).
- 21 S. Klumpp and J. Krieglstein, Biochim. Biophys. Acta 1754 (1–2), 291–295 (2005).
- 22 E. Tan, P. G. Besant, and P. V. Attwood, Biochemistry 41, 3843–3851 (2002).
- 23 W. Gong, Y. Li, G. Cui, J. Hu, H. Fang, C. Jin, and B. Xia, Biochem. J. 418, 337–344 (2009).
- 24 R. D. Busam, A. G. Thorsell, A. Flores, M. Hammarstrom, C. Persson, and B. M. Hallberg, J. Biol. Chem. 281, 33830–33834 (2006).
- 25 R. Ma, E. Kanders, U. B. Sundh, M. Geng, P. Ek, O. Zetterqvist, and J. P. Li, Biochem. Biophys. Res. Commun. 337, 887–891 (2005).
- 26 G. Schenk, C. L. Boutchard, L. E. Carrington, C. J. Noble, B. Moubaraki, K. S. Murray, J. de Jersey, G. R. Hanson, and S. Hamilton, J. Biol. Chem. 276, 19084–19088 (2001).
- 27 G. Schenk, Y. Ge, L. E. Carrington, C. J. Wynne, I. R. Searle, B. J. Carroll, S. Hamilton, and J. de Jersey, Arch. Biochem. Biophys. 370 (2), 183–189 (1999).
- 28 M. Dietrich, D. Munstermann, H. Sauerbaum, and H. Witzel, Eur. J. Biochem. 199, 105–113 (1991).
- 29 N. Sträter, T. Klabunde, P. Tucker, H. Witzel, and B. Krebs, Science (New York, N.Y.) 268, 1489–1492 (1995).
- 30 Y. Lindqvist, E. Johansson, H. Kaija, P. Vihko, and G. Schneider, J. Mol. Biol. 291 (1), 135–147 (1999).
- 31 L. W. Guddat, A. S. McAlpine, D. Hume, S. Hamilton, J. de Jersey, and J. L. Martin, Structure Fold Des 7, 757–767 (1999).
- 32 G. Schenk, L. R. Gahan, L. E. Carrington, N. Mitic, M. Valizadeh, S. E. Hamilton, J. de Jersey, and L. W. Guddat, Proc. Natl. Acad. Sci. U. S. A. 102, 273–278 (2005).
- 33 E. G. Mueller, M. W. Crowder, B. A. Averill, and J. R. Knowles, J. Am. Chem. Soc. 115, 2974–2975 (1993).
- 34 M. A. S. Aquino, J. S. Lim, and A. G. Sykes, J. Chem. Soc. Dalton Trans. (13), 2135–2136 (1992).
- 35 M. B. Twitchett, G. Schenk, M. A. S. Aquino, D. T. Y. Yiu, T. C. Lau, and A. G. Sykes, Inorg. Chem. 41, 5787–5794 (2002).
- 36 M. Merkx and B. A. Averill, J. Am. Chem. Soc. 121, 6683–6689 (1999).
- 37 F. Rusnak, L. Yu, and P. Mertz, J. Biol. Inorg. Chem. 1, 388–396 (1996).
- 38 N. Sträter, W. N. Lipscomb, T. Klabunde, and B. Krebs, Angew. Chem. Intl. Ed. Engl. 35, 2024–2055 (1996).
- 39 T. Klabunde, N. Sträter, R. Frohlich, H. Witzel, and B. Krebs, J. Mol. Biol. 259, 737–748 (1996).
- 40 M. D. Jackson and J. M. Denu. Chem. Rev. 101, 2313–2340 (2001).
- 41 D. Barford, A. K. Das, and M-P. Egloff, Annu. Rev. Biophys. Biomol. Struct. 27, 133–164 (1998).
- 42 D. L. Lohse, J. M. Denu, and J. E. Dixon, Structure 3, 987–990 (1995).
- 43 S. Zhuo, J. C. Clemens, R. L. Stone, and J. E. Dixon, J. Biol. Chem. 269, 26234–26238 (1994).
- 44 L. Yu, A. Haddy, and F. Rusnak, J. Am. Chem. Soc. 117, 10147–10148 (1995).
- 45 P. T. W. Cohen. J. Cell Sci. 115, 241–256 (2002).
- 46 J. B. Aggen, A. C. Nairn, and R. Chamberlin, Chem. Biol. 7, R13–R23 (2000).
- 47 G. R. Crabtree and N. A. Clipstone, Annu. Rev. Biochem. 63, 1045–1083 (1994).
- 48 M. Egloff, P. T. Cohen, P. Reinemer, and D. Barford, J. Mol. Biol 254, 942–959 (1995).
- 49 J. Goldberg, H. B. Huang, Y. G. Kwon, P. Greengard, A. C. Nairn, and J. Kuriyan, Nature 376, 745–753 (1995).
- 50 J. T. Maynes, K. S. Bateman, M. M. Cherney, A. K. Das, H. A. Luu, C. F. B. Holmes, and M. N. G. James, J. Biol. Chem. 276, 44078–44082 (2001).
- 51 Y. Xing, Y. H. Xu, Y. Chen, P. D. Jeffrey, Y. Chao, Z. Lin, Z. Li, S. Strack, J. B. Stock, and Y. G. Shi, Cell 127, 341–353 (2006).
- 52 J. P. Griffith, J. L. Kim, E. E. Kim, M. D. Sintchak, J. A. Thomson, M. J. Fitzgibbon, M. A. Fleming, P. R. Caron, K. Hsiao, and M. A. Navia, Cell 82, 507–522 (1995).
- 53 Q. Huai, H. Y. Kim, Y. D. Liu, Y. D. Zhao, A. Mondragon, J. O. Liu, and H. M. Ke, Proc. Nat. Acad. Sci. U. S. A. 99, 12037–12042 (2002).
- 54 C. R. Kissinger, H. E. Parge, D. R. Knighton, C. T. Lewis, L. A. Pelletier, A. Tempczyk, V. J. Kalish, K. D. Tucker, R. E. Showalter, and E. W. Moomaw, and co-workers, Nature 378, 641–644 (1995).
- 55 W. C. Voegtli, D. J. White, N. J. Reiter, F. Rusnak, and A. C. Rosenzweig, Biochemistry 39, 15365–15374 (2000).
- 56 P. Mertz, L. Yu, R. Sikkink, and F. Rusnak, J. Biol. Chem. 272, 21296–21302 (1997).
- 57 A. Mondragon, E. C. Griffith, L. Sun, F. Xiong, C. Armstrong, and J. O. Liu, Biochemistry 36, 4934–4942 (1997).
- 58 B. Martin, C. Pallen, J. Wang, and D. Graves, J. Biol. Chem. 260, 14932–14937 (1985).
- 59 B. L. Martin and D. J. Graves, J. Biol. Chem. 261, 14545–14550 (1986).
- 60 B. L. Martin and D. J. Graves, Biochim. Biophys. Acta 1206, 136–142 (1994).
- 61 A. K. Das, N. R. Helps, P. T. Cohen, and D. Barford, EMBO J. 15, 6798–6809 (1996).
- 62 J. J. Fernandez, M. L. Candenas, M. L. Souto, M. M. Trujillo, and M. Norte, Curr. Med. Chem. 9, 229–262 (2002).
- 63 M. C. Louzao, M. R. Vieytes, and L. M. Botana, Mini Rev. Med. Chem. 5, 207–215 (2005).
- 64 A. Schweighofer, H. Hirt, and L. Meskiene, Trends Plant Sci. 9, 236–243 (2004).
- 65 C. C. Fjeld and J. M. Denu, J. Biol. Chem. 274, 20336–20343 (1999).
- 66 A. Wehenkel, M. Bellinzoni, F. Schaeffer, A. Villarino, and P. M. Alzari, J. Mol. Biol. 374 (4), 890–898 (2007).
- 67 M. D. Jackson, C. C. Fjeld, and J. M. Denu, Biochemistry 42, 8513–8521 (2003).
- 68 M. Bellinzoni, A. Welhenkel, W. Shepard, and P. M. Alzari, Structure 15, 863–872 (2007).
- 69 Z. Y. Zhang, Annu. Rev. Pharmacol. Toxicol. 42, 209–234 (2002).
- 70 Z-Y. Zhang, CRC Crit. Rev. Biochem. Mol. Biol. 33, 1–52 (1998).
- 71 A. Alonso, S. Burkhalter, J. Sasin, L. Tautz, J. Bogetz, H. Huynh, M. C. Bremer, L. J. Holsinger, A. Godzik, and T. Mustelin, J. Biol. Chem. 279 (34), 35768–35774 (2004).
- 72 J. A. Stuckey, H. L. Schubert, E. B. Fauman, Z-Y. Zhang, J. E. Dixon, and M. A. Saper, Nature 370, 571–575 (1994).
- 73 H. L. Schubert, E. B. Fauman, J. A. Stuckey, J. E. Dixon, and M. A. Saper, Protein Sci. 4, 1904–1913 (1995).
- 74 E. B. Fauman and M. A. Saper, Trends Biochem. Sci. 21, 413–417 (1996).
- 75 Y-F. Keng, L. Wu, and Z-Y. Zhang, Eur. J. Biochem. 259, 809–814 (1999).
- 76 A. K. H. Hirsch, F. R. Fischer, and F. Diederich, Angew. Chem. Int. Ed. Engl. 46, 338–352 (2007).
- 77 R. Agarwal, S. K. Burley, and S. Swaminathan, J. Biol. Chem. 283, 8946–8953 (2008).
- 78 A. C. Hengge, Acc. Chem. Res. 35, 105–112 (2002).
- 79 Y. Zhao and Z. Y. Zhang, Biochemistry 35, 11797–11804 (1996).
- 80 R. H. Hoff, L. Wu, B. Zhou, Z-Y. Zhang, and A. C. Hengge, J. Am. Chem. Soc. 121, 9514–9521 (1999).
- 81 U. T. Bornscheuer and R. J. Kazlauskas, Angew. Chem. Int. Ed. 43, 6032–6040 (2004).
- 82 S. D. Copley, Curr. Opin. Chem. Biol. 7, 265–272 (2003).
- 83 K. Hult and P. Berglund, Trends Biotechnol. 25, 231–238 (2007).
- 84 S. Jonas and F. Hollfelder, Pure Appl. Chem. 81, 731–742 (2009).
- 85 O. Khersonsky, C. Roodveldt, and D. S. Tawfik, Curr. Opin. Chem. Biol. 10, 498–508 (2006).
- 86 P. J. O'Brien and D. Herschlag, Chem. Biol. 6 (4), R91–R105 (1999).
- 87 N. U. Gamage, S. Tsvetanov, R. G. Duggleby, M. E. McManus, and J. L. Martin, J. Biol. Chem. 280, 41482–41486 (2005).
- 88 L. C. James and D. S. Tawfik, Trends Biochem. Sci. 28, 361–368 (2003).
- 89 R. A. Jensen, Ann. Rev. Microbiol. 30, 17 (1976).
- 90 D. H. G. Crout, H. Dalton, D. W. Hutchinson, and M. Miyagoshi. J. Chem. Soc., Perkin Trans. 1, 1329–1334 (1991).
- 91 C. Neuberg and J. Hirsch, Biochem. Z. 115, 29 (1921).
- 92 P. J. O'Brien and D. Herschlag, J. Am. Chem. Soc. 120, 12369–12370 (1998).
- 93 P. J. O'Brien and D. Herschlag, Biochemistry 40, 5691–5699 (2001).
- 94 K. C. Yang and W. W. Metcalf, Proc. Nat. Acad. Sci. U. S. A. 101, 7919–7924 (2004).
- 95 H. Cheng, I. Nikolic-Hughes, J. H. H. Wang, H. Deng, P. J. O'Brien, L. Wu, Z. Y. Zhang, D. Herschlag, and R. Callender, J. Am. Chem. Soc. 124, 11295–11306 (2002).
- 96 I. Catrina, P. J. O'Brien, J. Purcell, I. Nikolic-Hughes, J. G. Zalatan, A. C. Hengge, and D. Herschlag, J. Am. Chem. Soc. 129, 5760–5765 (2007).
- 97 J. G. Zalatan and D. Herschlag, J. Am. Chem. Soc. 128, 1293–1303 (2006).
- 98 C. S. Bond, P. R. Clements, S. J. Ashby, C. A. Collyer, S. J. Harrop, J. J. Hopwood, and J. M. Guss, Structure 5, 277–289 (1997).
- 99 G. Lukatela, N. Krauss, K. Theis, T. Selmer, V. Gieselmann, K. von Figura, and W. Saenger, Biochemistry 37, 3654–3664 (1998).
- 100 A. C. Babtie, S. Bandyopadhyay, L. F. Olguin, and F. Hollfelder, Angew. Chem. Int. Ed. 48, 3692–3694 (2009).
- 101 L. F. Olguin, S. E. Askew, A. C. O'Donoghue, and F. Hollfelder, J. Am. Chem. Soc. 130, 16547–16555 (2008).
- 102 R. S. Cox, G. Schenk, N. Mitic, L. R. Gahan, and A. C. Hengge, J. Am. Chem. Soc. 129, 9550–9551 (2007).
- 103 C. McWhirter, E. A. Lund, E. A. Tanifum, G. Feng, Q. I. Sheikh, A. C. Hengge, and N. H. Williams, J. Am. Chem. Soc. 130, 13673–13682 (2008).
- 104 P. J. Ala, L. Gonneville, M. C. Hillman, M. Becker-Pasha, M. Wei, B. G. Reid, R. Klabe, E. W. Yue, B. Wayland, and B. Douty, and co-workers, J. Biol. Chem. 281, 32784–32795 (2006).
- 105 M. R. Groves, Z. J. Yao, P. P. Roller, T. R. Burke, Jr., and D. Barford. Biochemistry 37, 17773–17783 (1998).
Further Reading
-
T. S. Widlanski and
W. Taylor, in
D. Barton and
D. Meth-Cohn, eds.
Comprehensive Natural Products Chemistry,
Vol. 5,
Elsevier,
1999, pp.
139–162.
10.1016/B978-0-08-091283-7.00112-0 Google Scholar
- N. Mitic, S. J. Smith, A. Neves, L. W. Guddat, L. R. Gahan, and G. Schenk, Chem. Rev. 106 (8), 3338–3363 (2006).
- A. C. Hengge, Adv. Phys. Org. Chem. 40, 49–108 (2005).