Methane Conversion—Homogeneous
Toshiyasu Sakakura
National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
Search for more papers by this authorToshiyasu Sakakura
National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
Search for more papers by this authorAbstract
This review article summarizes recent progress in utilization of methane as a sustainable carbon resource by homogeneous catalysis. Such conversion is a very difficult subject because the CH bond of methane is too strong to break under moderate conditions where catalyst molecules and common organic solvents can survive, and the concentration of methane in solution is usually too low. Three major synthetic targets are methanol, acetic acid, and acetaldehyde. As for the conversion of methane to methanol, the products are in many cases esters [CH3OC(O)CF3 or CH3OSO3 H] since it is a smart way to prevent secondary reactions of the products. Acetic acid can be formed via oxidative carbonylation or a seemingly direct addition of CO2. Methane conversions proceed through (1) electrophilic CH bond activation in a strongly acidic medium, (2) radical reactions promoted in many cases by K2S2O8, and (3) CH oxidative additions to low valent transition metal complexes. Related reactions of other hydrocarbons are also described to some extent for reference.
Bibliography
- 1(a)
A. E. Shilov and
G. B. Shul'pin,
Chem. Rev.
97,
2879
(1997);
(b)
R. H. Crabtree,
Chem. Rev.
95,
987
(1995);
(c)
R. H. Crabtree,
J. Chem. Soc., Dalton Trans.
2437
(2001);
(d)
Y. Guari,
S. Sabo-Etienne, and
B. Chaudret,
Eur. J. Inorg. Chem.
1047
(1999).
10.1002/(SICI)1099-0682(199907)1999:7<1047::AID-EJIC1047>3.0.CO;2-B CAS Web of Science® Google Scholar
- 2 J. K. Hoyano, A. D. McMaster, and W. A. G. Graham, J. Am. Chem. Soc. 105, 7190 (1983).
- 3(a) M. J. Wax, J. M. Stryker, J. M. Buchanan, C. A. Kovac, and R. G. Bergman, J. Am. Chem. Soc. 106, 1121 (1984); (b) M. B. Sponsler, B. H. Weiller, P. O. Stoutland, and R. G. Bergman, J. Am. Chem. Soc. 111, 6841 (1989).
- 4 C. K. Ghosh and W. A. G. Graham, J. Am. Chem. Soc. 109, 4726 (1987).
- 5 T. T. Wenzel and R. G. Bergman, J. Am. Chem. Soc. 108, 4856 (1986).
- 6 M. Hackett and G. M. Whitesides, J. Am. Chem. Soc. 110, 1449 (1988).
- 7 D. D. Wick and K. I. Goldberg, J. Am. Chem. Soc. 119, 10235 (1997).
- 8 K. M. Waltz and J. F. Hartwig, Science 277, 211 (1997).
- 9(a) T. Sakakura, T. Sodeyama, and M. Tanaka, New J. Chem. 13, 737 (1989); (b) T. Sakakura, T. Sodeyama, K. Sasaki, K. Wada, and M. Tanaka, J. Am. Chem. Soc. 112, 7221 (1990).
- 10 P. Margl, T. Ziegler, and P. E. Blöchl, J. Am. Chem. Soc. 117, 12625 (1995); (b) J. S. Bridgewater, B. Lee, S. Bernhard, J. R. Schoonover, and P. C. Ford, Organometallics 16, 5592 (1997).
- 11 J.-C. Choi, Y. Kobayashi, and T. Sakakura, J. Org. Chem. 66, 5262 (2001).
- 12(a) H. Chen, S. Schlecht, T. C. Semple, and J. F. Hartwig, Science, 287, 1995 (2000); (b) K. M. Waltz and J. F. Hartwig, J. Am. Chem. Soc. 122, 11358 (2000).
- 13(a) L. A. Kushch, V. V. Lavrushko, Y. S. Misharin, A. P. Moravsky, and A. E. Shilov, Nouv. J. Chim. 7, 729 (1983); (b) L. Wang, S. S. Stahl, J. A. Labinger, and J. E. Bercaw, J. Mol. Catal. A: Chem. 116, 269 (1997).
- 14 A. E. Shilov, Activation of Saturated Hydrocarbons by Transition Metal Complexes, D. Reidel Publishing Company, Dordrecht, the Netherlands, 1984.
- 15 M. W. Holtcamp, J. A. Labinger, and J. E. Bercaw, J. Am. Chem. Soc. 119, 848 (1997).
- 16 L. Johansson, O. B. Ryan, and M. Tilset, J. Am. Chem. Soc. 121, 1974 (1999).
- 17 P. Burger and R. G. Bergman, J. Am. Chem. Soc. 115, 10462 (1993).
- 18 P. L. Watson, J. Am. Chem. Soc. 105, 6491 (1983).
- 19(a) C. M. Fendrick and T. J. Marks, J. Am. Chem. Soc. 106, 2214 (1984); (b) C. M. Fendrick, and T. J. Marks, J. Am. Chem. Soc. 108, 425 (1986).
- 20 M. E. Thompson, S. M. Baxter, A. R. Bulls, B. J. Barger, M. C. Nolan, B. D. Santarsiero, W. P. Schaefer, and J. E. Bercaw, J. Am. Chem. Soc. 109, 203 (1987).
- 21 A. Miyashita and Y. Saida, Chem. Lett. 2263 (1994).
- 22(a) A. E. Sherry and B. B. Wayland, J. Am. Chem. Soc. 112, 1259 (1990); (b) B. B. Wayland, S. Ba, and A. E. Sherry, J. Am. Chem. Soc. 113, 5305 (1991).
- 23 T. Naota, H. Takaya, and S.-I. Murahashi, Chem. Rev. 98, 2599 (1998).
- 24 D. H. R. Barton and D. Doller, Acc. Chem. Res. 25, 504.
- 25(a) H. Ohtake, T. Higuchi, and M. Hirobe, J. Am. Chem. Soc. 114, 10660 (1992); (b) R. Raja and P. Ratnasamy, Appl. Catal. A: Gen. 158, L7 (1997).
- 26 A. S. Goldstein and R. S. Drago, J. Chem. Soc. Chem. Commun. 1991, 21.
- 27 C. N. Dixon and M. A. Abraham, J. Supercrit. Fluids 5, 269 (1992).
- 28(a) X.-W. Wu, Y. Oshima, and S. Koda, Chem. Lett. 1045 (1997); (b) N. Theyssen and W. Leitner, Chem. Commun. 410 (2002).
- 29 Y. Ikushima and M. Arai, in P. G. Jessop and W. Leitner, eds., Chemical Synthesis Using Supercritical Fluids, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, Germany, 1999, p. 267.
- 30 G. Musie, M. Wei, B. Subramaniam, and D. H. Busch, Coord. Chem. Rev. 219–221, 789 (2001).
- 31 A. Sen, E. Gretz, T. F. Oliver, and Z. Jiang, New J. Chem. 13, 755 (1989).
- 32 E. Gretz, T. F. Oliver, and A. Sen, J. Am. Chem. Soc. 109, 8109 (1987).
- 33 C. E. Taylor, R. R. Anderson, and R. P. Noceti, Catal. Today 35, 407 (1997).
- 34 R. A. Periana, D. J. Taube, E. R. Evitt, D. G. Loffler, P. R. Wentrcek, G. Voss, and T. Masuda, Science 259, 340 (1993).
- 35 T. Hogan and A. Sen, J. Am. Chem. Soc. 119, 2642 (1997).
- 36 L.-C. Kao, A. C. Hutson, and A. Sen, J. Am. Chem. Soc. 113, 700 (1991).
- 37 M. N. Vargaftik, I. P. Stolarov, and I. I. Moiseev, J. Chem. Soc. Chem. Commun. 1049 (1990).
- 38 I. Yamanaka, M. Soma, and K. Otsuka, J. Chem. Soc. Chem. Commun. 2235 (1995).
- 39 I. Yamanaka, K. Nakagaki, T. Akimoto, and K. Otsuka, J. Chem. Soc. Perkin Trans. 2 2511 (1996).
- 40 I. Yamanaka, K. Morimoto, M. Soma, and K. Otsuka, J. Mol. Catal. A: Chem. 133, 251 (1998).
- 41 M. Lin, T. Hogan, and A. Sen, J. Am. Chem. Soc. 119, 6048 (1997).
- 42 D.-g. Piao, K. Inoue, H. Shibasaki, Y. Taniguchi, T. Kitamura, and Y. Fujiwara, J. Organomet. Chem. 574, 116 (1999).
- 43
M. Muehlhofer,
T. Strassner, and
W. A. Herrmann,
Angew. Chem. Int. Ed.,
41,
1745
(2002).
10.1002/1521-3773(20020517)41:10<1745::AID-ANIE1745>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 44 A. Sen, M. A. Benvenuto, M. Lin, A. C. Huston, and N. Basickes, J. Am. Chem. Soc. 116, 998 (1994).
- 45(a)
R. A. Periana,
D. J. Taube,
S. Gamble,
H. Taube,
T. Satoh, and
H. Fujii,
Science,
280,
560
(1998);
(b)
D. Wolf,
Angew. Chem. Int. Ed.
37,
3351
(1998).
10.1002/(SICI)1521-3773(19981231)37:24<3351::AID-ANIE3351>3.0.CO;2-U CAS Web of Science® Google Scholar
- 46(a) C. J. Jones, D. Taube, V. R. Ziatdinov, R. A. Periana, R. J. Nielsen, J. Oxgaard, and W. A. Goddard III, Angew. Chem. Int. Ed., 43, 4626 (2004); (b) D. E. De Vos and B. F. Sels, Angew. Chem. Int. Ed. 44, 30 (2005); (c) R. Skouta and C.-J. Li, Tetrahedron 64, 4917 (2008).
- 47 N. Basickes, T. E. Hogan, and A. Sen, J. Am. Chem. Soc. 118, 13111 (1996).
- 48 R. A. Periana, O. Mirinov, D. J. Taube, and S. Gamble, Chem. Commun. 2376 (2002).
- 49 S. Mukhopadhyay and A. T. Bell, Angew. Chem. Int. Ed. 42, 1019 (2003).
- 50 S. Mukhopadhyay and A. T. Bell, Angew. Chem. Int. Ed. 42, 2990 (2003).
- 51 S. Mukhopadhyay and A. T. Bell, J. Am. Chem. Soc. 125, 4406 (2003).
- 52 S. Mukhopadhyay and A. T. Bell, Chem. Commun. 1590 (2003).
- 53 W. Lu, Y. Yamaoka, Y. Taniguchi, T. Kitamura, K. Takaki, and Y. Fujiwara, J. Organomet. Chem. 580, 290 (1999).
- 54 K. Takaki, K. Nakata. Y. Taniguchi, and Y. Fujiwara, Yuki Gosei Kagaku Kyoukaishi 52, 809 (1994).
- 55 Y. Fujiwara, K. Takaki, and Y. Taniguchi, Synlett 591 (1996).
- 56 C. Jia, T. Kitamura, and Y. Fujiwara, Acc. Chem. Res. 34, 633 (2001).
- 57 Y. Taniguchi, T. Hayashida, H. Shibasaki, D. Piao, T. Kitamura, T. Yamaji, and Y. Fujiwara, Org. Lett. 1, 557 (1999).
- 58 M. Asadullah, T. Kitamura, and Y. Fujiwara, Angew. Int. Engl. Ed. 39, 2475 (2000).
- 59 M. Asadullah and co-workers, Kidorui 32, 290 (1998).
- 60 G. V. Nizova, G. Suss-Fink, S. Stanislas, and G. B. Shul'pin, J. Chem. Soc. Chem. Commun. 1885 (1998).
- 61 M. Lin and A. Sen, Nature 368, 613 (1994).
- 62 M. Lin, T. E. Hogan, and A. Sen, J. Am. Chem. Soc. 118, 4574 (1996).
- 63 Y. Taniguchi, T. Hayashida, T. Kitamura, Y. and Fujiwara, Stud. Surf. Sci. Catal. 114, 439 (1998).
- 64 T. Hayashida, K. Ito, Y. Taniguchi, T. Kitamura, and Y. Fujiwara, in 45th Symposium on Organometallic Chemistry, Tokyo, Japan, 1998, abstract PB216.
- 65 P. M. Reis, J. A. L. Silva, A. F. Palavra, J. J. R. Frausto da Silva, T. Kitamura, Y. Fujiwara, and A. J. L. Pombeiro, Angew. Chem. Int. Ed. 42, 821 (2003).
- 66 R. A. Periana, O. Mironov, D. Taube, G. Bhalla, and C. J. Jones, Nature 301, 814 (2003).
- 67 R. A. Periana, O. Mironov, D. Taube, G. Bhalla, and C. J. Jones, Top. Catal. 32, 169 (2005).
- 68 Y. Seki, N. Mizuno, and M. Misono, Appl. Catal., A: Gen. 158, L47 (1997).
- 69 J. Sommer, M. Muller, and K. Laali, Nouv. J. Chim. 6, 3 (1982).
- 70 M. Siskin, J. Am. Chem. Soc. 98, 5413 (1976).
- 71 N. S. Enikolopyan, Kh. R. Gyulumyan, and E. H. Grigoryan, Dokl. Akad. Nauk. SSSR 249, 1380 (1979).
- 72(a) E. A. Grigoryan, Kh. R. Gyulumyan, E. I. Gurtovaya, N. S. Enikolopyan, and M. A. Ter-Kazarova, Dokl. Akad. Nauk SSSR 257, 364 (1981); (b) N. F. Noskova, D. V. Sokol'skii, M. B. Izteleuova, and N. A. Gafarova, Dokl. Akad. Nauk SSSR 262, 113 (1982).
- 73 N. S. Enikolopyan, G. N. Menchikova, and E. H. Grigoryan, Dokl. Akad. Nauk SSSR 291, 11 (1986).
- 74 A. D. Sadow and T. D. Tilley, J. Am. Chem. Soc. 125, 7971 (2003).
- 75 K. Wada, M. Nakashita, and T. Mitsudo, J. Chem. Soc. Chem. Commun. 133 (1998).
- 76 J.-C. Choi and T. Sakakura, J. Am. Chem. Soc. 125, 7762 (2003).
- 77 R. Kazimerczuk, T. Woznievski, M. Borowiak, E. Zimnicka, K. Zwolinski, Z. Rogulski, A. Trzeciak, S. Ostrowski, J. Cz, Dobrowolski, and W. Skupinski, Tetrahedron Lett. 48, 7046 (2007).
- 78 B. S. Jaynes and C. L. Hill, J. Am. Chem. Soc. 117, 4704 (1995), and the references cited therein.
- 79 R. H. Crabtree, Angew. Chem. Int. Ed. Engl. 32, 1491 (1993).