Metal Nitrides
Jae Sung Lee
Pohang University of Science and Technology, Pohang, South Korea
Search for more papers by this authorDong Jin Ham
Pohang University of Science and Technology, Pohang, South Korea
Search for more papers by this authorJae Sung Lee
Pohang University of Science and Technology, Pohang, South Korea
Search for more papers by this authorDong Jin Ham
Pohang University of Science and Technology, Pohang, South Korea
Search for more papers by this authorAbstract
Transition metal nitrides are characterized by high melting points, hardness, and resistance to corrosion. These physical properties are desired for catalytic materials that require resistance against attrition and sintering under reaction conditions. Since high specific area materials became available with clean surfaces, they have attracted considerable attention as catalysts or electrocatalysts for many reactions including hydrotreating (hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation) hydrogenation, dehydrogenation, ammonia synthesis, and fuel cell reactions. Metal nitrides demonstrate catalytic advantages over their parent metals in activity, selectivity, and resistance to poisoning. They have been found to be good catalysts for a number of reactions typically catalyzed by noble metals of high cost and limited supply. Structure, bonding, synthesis, surface reactivity, and catalysis of transition metal nitrides are discussed.
Bibliography
- 1 S. T. Oyama and G. L. Haller, in G. C. Bonds and G. Webbs, eds., Catalysis, Specialist Periodical Reports, The Chemical Society, London, 1981, Vol. 5, p. 333.
- 2
L. Leclercq, in
J. P. Bonnelle,
B. Delmon, and
E. Derouane, eds.,
Surface Properties and Catalysis by Nonmetals,
Reidel, Dordrecht,
the Netherlands,
1983,
p. 433.
10.1007/978-94-009-7160-8_18 Google Scholar
- 3 R. B. Levy, in J. J. Burton and R. L. Garten, eds., Advanced Materials in Catalysis, Academic Press, Inc., New York, 1977, p. 101.
- 4 S. T. Oyama, Catal. Today 15, 179–200 (1992).
- 5
S. T. Oyama, in
S. T. Oyama, ed.,
The Chemistry of Transition Metal Carbides and Nitrides,
Blacke Academic and Professional,
Glasgow, UK,
1996.
10.1007/978-94-009-1565-7 Google Scholar
- 6 L. E. Toth, Transition Metal Carbides and Nitrides, Academic Press, Inc., New York, 1971.
- 7 R. Freer, ed., The Physics and Chemistry of Carbides, Nitrides, and Borides, Kluwer Academic Publishers, Dortrecht, the Netherlands, 1990.
- 8
V. A. Gubanov,
A. L. Ianovsky, and
V. P. Zhukov,
Electronic Structure of Refractory Carbides and Nitrides,
Cambridge University Press,
Cambridge, UK,
1994.
10.1017/CBO9780511629037 Google Scholar
- 9 F. A. Ponce, T. D. Moustakas, I. Akasaki, and B. A. Monemar, eds., III-V Nitrides, Materials Research Society, Warrendale, Pa., 1997.
- 10 Y. G. Gogotsi and R. A. Andrievski, eds., Materials Science of Carbides, Nitrides, and Borides, Kluwer Academic Publishers, Dortrecht, the Netherlands, 1999.
- 11 E. J. Markel and M. E. Leaphart II, in M. E. Howe-Grant, ed., Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., John Wiley & Sons, Inc., New York, 1992, p. 108.
- 12 P. Ettmayer and W. Lengauer, in R. B. King, ed., Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Inc., Chichester, UK, 1994, p. 2498.
- 13 L. Volpe and M. Boudart, J. Solid State Chem. 59, 332 (1985).
- 14 R. Kapoor and S. T. Oyama, J. Solid State Chem. 120, 320 (1995).
- 15 H. S. Kim, C. H. Chin, G. Bugli, M. Bureau-Tardy, and G. Djega-Mariadassou, Appl. Catal. A 119, 223 (1994).
- 16 H. C. zur Loye, J. D. Houmes, and D. S. Bem, in Ref. 5, p. 155.
- 17 N. E. Brese and M. O'Keefe, Struct. Bonding (Berlin) 79, 307 (1992).
- 18 L. Brewer, Science 161, 115 (1968).
- 19 A. Neckel, P. Rastl, R. Eibler, P. Weiberger, and K. Schwarz, J. Phys. C 9, 579 (1976).
- 20 J. G. Chen, Chem. Rev. 96, 1477–1498 (1996).
- 21 S. T. Oyama, J. C. Schlatter, J. E. Metcalfe, and J. M. Lambert, Ind. Eng. Chem. Res. 27, 1639 (1988).
- 22 G. S. Ranhotra, G. W. Haddix, A. T. Bell, and J. A. Reimer, J. Catal. 108, 24 (1987).
- 23 J.-G. Choi, R. L. Curl, and L. T. Thompson, J. Catal. 146, 218 (1994).
- 24 J.-G. Choi, J. R. Brenner, C. W. Colling, B. G. Demczyk, J. L. Dunning, and L. T. Thompson, Catal. Today 15, 201 (1992).
- 25 R. C. V. McGee, S. K. Bej and L. T. Thompson, Appl. Catal. A 284, 139 (2005).
- 26 K. L. Roberts and E. J. Markel, J. Phys. Chem. 98, 4083 (1994).
- 27 E. J. Makel, S. E. Burdick, M. E. Leaphart II, and K. L. Roberts, J. Catal. 182, 136 (1999).
- 28 S. Li and J. S. Lee, J. Catal. 162, 76 (1996).
- 29 N. A. K. Hansen and W. A. Herrmann, Chem. Mater. 10, 1677 (1998).
- 30 C. Giordano, C. Erpen, W. Yao, and M. Antonietti, Nano Lett. 8, 4659 (2008).
- 31 J. L. O'Loughlin, C. H. Wallace, M. S. Knox, and R. B. Kaner, Inorg. Chem. 40, 2240 (2001).
- 32 P. Afanasiev, Inorg. Chem. 41, 5317 (2002).
- 33 R. Marchand, F. Tessier, and F. J. Disalvo, J. Mater. Chem. 9, 297 (1999).
- 34 V. Miikkulainen, M. Suvanto, and T. A. Pakkanen, Thin Solid Films 516, 6041 (2008).
- 35 V. Miikkulainen, M. Suvanto, and T. A. Pakkanen, Chem. Mater. 19, 263 (2007).
- 36 M. Bereznai, Z. Toth, A. P. Caricato, M. Fernandez, A. Luches, G. Majni, P. Mengucci, P. M. Nagy, A. Juhasz, and L. Nanai, Thin Solid Films 473, 16 (2005).
- 37 C. W. Colling and L. T. Thompson, J. Catal. 146, 193 (1994).
- 38 X. Chen, T. Zhang, M. Zheng, Z. Wu, W. Wu, and C. Li, J. Catal. 224, 473 (2004).
- 39 M. Nagai, Appl. Catal. A 322, 178 (2007).
- 40 C. Shi, A. M. Zhu, X. F. Yang, and C. T. Au, Appl. Catal. A 293, 83 (2005).
- 41 D. Xia, S. Liu, Z. Wang, G. Chen, L. Zhang, L. Zhang, S. Hui, and J. Zhang, J. Power Sources 177, 296 (2008).
- 42 H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, and B. Yi, Electrochem. Commun. 8, 707 (2006).
- 43 J. H. Kim and K. L. Kim, Appl. Catal. A 181, 103 (1999).
- 44 P. Bai, W. Xing, and Z. Yan, J. Porous Mater. 13, 173 (2006).
- 45 M. Nagai, T. Suda, K. Oshikawa, N. Hirano, and S. Omi, Catal. Today 50, 29 (1999).
- 46 H. Zhong, H. Zhang, Y. Liang, J. Zhang, M. Wang, and X. Wang, J. Power Sources 164, 572 (2007).
- 47 Y. M. Zhao, W. B. Hu, Y. D. Xia, E. F. Smith, Y. Q. Zhu, C. W. Dunnill, and D. H. Gregory, J. Mater. Chem. 17, 4436 (2007).
- 48 S. Ramanathan and S. T. Oyama, J. Phys. Chem. 99, 16365 (1995).
- 49 J. Li, L. Gao, J. Sun, Q. Zhang, J. Guo, and D. Yan, J. Am. Ceram. Soc. 84, 3045 (2001).
- 50 S. Kaskel, K. Schlichte, G. Chaplais, and M. Khanna, J. Mater. Chem. 13, 1496 (2003).
- 51 S. Kaskel, K. Schlichte, and T. Kratzke, J. Mol. Catal. A 208, 291 (2004).
- 52 T. Rabe and R. Wasche, Nanostruct. Mater. 6, 357 (1995).
- 53 O. T. M. Musthafa and S. Sampath, Chem. Commun. 67 ( 2008).
- 54 L. E. Griffiths, M. R. Lee, A. R. Mount, H. Kondoh, T. Ohta, and C. R. Pulham, Chem. Commun. 579 (2001).
- 55 A. Fischer, M. Antonietti, and A. Thomas, Adv. Mater. 19, 264 (2007).
- 56 Y. Jun, W. H. Hong, M. Antonietti, and A. Thomas, Adv. Mater. 21, 4270 (2009).
- 57 V. K. W. Grips, H. C. Barshilia, V. E. Selvi, Kalavati, and K. S. Rajam, Thin Solid Films 514, 204 (2006).
- 58 J.-G. Choi, J. Ha, and J.-W. Hong, Appl. Catal. A 168, 47 (1998).
- 59 J.-G. Choi, J. Catal. 182, 104 (1999).
- 60 H. Kwon, S. Choi, and L. T. Thompson, J. Catal. 184, 236 (1999).
- 61 Q. Sun and Z. Fu, Electrochim. Acta 54, 403 (2008).
- 62 Y. Shi, Y. Wan, R. Zhang, and D. Zhao, Adv. Funct. Mater. 18, 2436 (2008).
- 63 A. Conde, A. B. Cristobal, G. Fuentes, T. Tate, and J. D. Damborenea, Surf. Coat. Technol. 201, 3588 (2006).
- 64 H. V. Schwartz and S. T. Oyama, Chem. Mater. 9, 3052 (1997).
- 65 M. Nagai, R. Nakauchi, Y. Ono, and S. Omi, Catal. Today 57, 297 (2000).
- 66 M. Azuma, Y. Nakato, and H. Tsubomura, Mater. Res. Bull. 22, 527 (1987).
- 67 B. Mazumder, and A. L. Hector, J. Mater. Chem. 18, 1392 (2008).
- 68 B. Mazumder, P. Chirico, and A. L. Hector, Inorg. Chem. 47, 9684 (2008).
- 69 B. Mazumder, and A. L. Hector, Top. Catal. 52, 1472 (2009).
- 70 C. C. Yu, S. Ramanathan, and S. T. Oyama, J. Catal. 173, 1 (1998).
- 71 A. El-Himri, P. Nunez, F. Sapina, R. Ibanez, A. Beltran, and J. Martinez-Agudo, J. Solid State. Chem. 177, 2423 (2004).
- 72 J. B. Claridge, A. P. E. York, A. J. Brungs, and M. L. H. Green, Chem. Mater. 12, 132 (2000).
- 73 K. S. Weil, J. Y. Kim, and P. N. Kumta, Mater. Lett. 39, 292 (1999).
- 74 S. Alconchel, F. Sapina, and E. Martinez, Dalton Trans. 2463 (2004).
- 75 X. Wang, M. Zhang, W. Li, and K. Tao, Dalton Trans. 5165 (2007).
- 76 S. Yang, Y. Li, C. Ji, C. Li, and Q. Xin, J. Catal. 174, 34 (1998).
- 77 S. W. Yang, C. Li, J. Xu, and Q. Xin, J. Phys. Chem. B 102, 6986 (1998).
- 78 X. S. Li, K. J. Zhang, Q. Xin, C. X. Ji, Y. F. Miao, and L. Wang, React. Kinet. Catal. Lett. 57, 177 (1996).
- 79 G. W. Haddix, J. A. Reimer, and A. T. Bell, J. Catal. 108, 59 (1987).
- 80 A. Guerrero-Ruiz, Q. Xin, Y. J. Zhang, A. Maroto-Valiente, and I. Rodriguez-Ramos, Langmuir 15, 4927 (1999).
- 81 Y. J. Zhang, Y. X. Li, C. Li, and Q. Xin, Stud. Surf. Sci. Catal. 112, 457 (1997).
- 82 J. S. Lee and M. Boudart, Catal. Lett. 20, 97 (1993).
- 83 S. Ramanathan and S. T. Oyama, J. Phys. Chem. 99, 16365 (1995).
- 84 I. K. Milad, K. J. Smith, P. C. Wong, and K. A. R. Mitchell, Catal. Lett. 52, 113 (1998).
- 85 D. J. Sajkowski and S. T. Oyama, Appl. Catal. A 134, 339 (1996).
- 86 P. A. Aegerter, W. W. C. Quigley, G. J. Simpson, D. D. Ziegler, J. W. Logan, K. R. McCrea, S. Glazier, and M. F. Bussel, J. Catal. 164, 109 (1996).
- 87 U. S. Ozkan, L. Zhang, and P. A. Clark, J. Catal. 172, 294 (1997).
- 88 E. J. Markel and J. W. V. Zee, J. Catal. 126, 643 (1990).
- 89 T. Kadono, T. Kubota and Y. Okamoto, Catal. Today 87, 107 (2003).
- 90 J. C. Schlatter, S. T. Oyama, J. E. Metcalfe, and J. M. Lambert, Ind. Eng. Chem. Res. 27, 1648 (1988).
- 91 K. S. Lee, H. Abe, J. A. Reimer, and A. T. Bell, J. Catal. 139, 34 (1993).
- 92 J. W. Logan, J. L. Heiser, K. R. McCrea, B. D. Gates, and M. F. Bussel, Catal. Lett. 56, 165 (1998).
- 93 Y. Chu, J. Wei, S. Yang, C. Li, Q. Xin, and E. Min, Appl. Catal. A 176, 17 (1999).
- 94 S. Ramanathan, C. C. Yu, and S. T. Oyama, J. Catal. 173, 10 (1998).
- 95 D.-W. Kim, D.-K. Lee, and S.-K. Ihm, Catal. Lett. 43, 91 (1997).
- 96 R. Kapoor, S. T. Oyama, B. Fruhberger, and J. G. Chen, J. Phys. Chem. B 101, 1543 (1997).
- 97 Y.-J. Zhang, Q. Xin, I. Rodriguez-Ramos, and A. Guerrero-Ruiz Appl. Catal. A 180, 237 (1999).
- 98 S. Li, J. S. Lee, T. Hyeon, and K. S. Suslick, Appl. Catal. A 184, 1 (1999).
- 99(a) S. Li and J. S. Lee, J. Catal. 173, 134 (1998); (b) J. Catal. 178, 119 (1998).
- 100
M. Boudart,
S. T. Oyama, and
L. Leclercq, in
T. Seiyama and
K. Tanabe, eds.,
Proceedings of the 7th International Congress on Catalysis,
Elsevier,
Amsterdam, the Netherlands,
1981,
p. 578.
10.1016/S0167-2991(09)60300-1 Google Scholar
- 101 M. K. Neylon, S. Choi, H. Kwon, K. E. Curry, and L. T. Thompson, Appl. Catal. A 183, 253 (1999).
- 102 S. Sellem, C. Potvin, J.-M. Manoli, R. Contant, and G. Djega-Mariadassou, J. Chem. Soc., Chem. Commun. 359 (1995).
- 103 S. Sellem, C. Potvin, J.-M. Manoli, J. Maquet, and G. Djega-Mariadassou, Catal. Lett. 41, 89 (1996).
- 104(a)
Y. Shigehara,
Nippon Kagaku Kaishi
4,
470
(1977);
10.1246/nikkashi.1977.470 Google Scholar(b) Nippon Kagaku Kaishi 10, 1438 (1977).
- 105 Y. Zhang, Z. Wei, W. Yan, P. Ying, C. Ji, X. Li, Z. Zhou, X. Sun, and Q. Xin, Catal. Today 30, 135 (1996).
- 106 H. Kwon, L. T. Thompson, J. Eng, and J. G. Chen, J. Catal. 190, 60 (2000).
- 107 R. B. Anderson, The Fischer-Tropsch Synthesis, Academic Press, Inc., Orlando, Fla., 1984, p. 159.
- 108 M. Saito and R. B. Anderson, J. Catal. 63, 438 (1980).
- 109 M. Saito and R. B. Anderson, J. Catal. 67, 296 (1981).
- 110 G. S. Ranhotra, A. T. Bell, and J. A. Reimer, J. Catal. 108, 40 (1987).
- 111 J. H. Lee, C. E. Hamrin Jr., and B. H. Davis, Catal. Today 15, 223 (1992).
- 112 A. J. Kharlamov and N. V. Kirillova, React. Kinet. Catal. Lett. 15, 345 (1980).
- 113 G. H. Xie, T. F. Bai, L. D. An, H. Q. Wang, and J. M. You, React. Kinet. Catal. Lett. 65, 331 (1998).
- 114 S. L. Roberson, D. Finello, and R. F. Davis, J. Appl. Electrochem. 29, 75 (1999).
- 115 D. Choi and P. N. Kumta, J. Am. Ceram. Soc. 90, 3113 (2007).
- 116 J. C. Francois, Y. Massiani, P. Gravier, J. Grimblot, and L. Gengembre, Thin Solid Films 223, 223 (1993).
- 117 B. Walther, J. Schilm, A. Michaelis, and M. M. Lohrengel, Electrochim. Acta 52, 7732 (2007).
- 118 B. Subramanian and M. Jayachandran, Mater. Lett. 62, 1727 (2008).
- 119 C. Chen, D. Zhao, and X. Wang, Mater. Chem. Phys. 97, 156 (2006).