Abstract
The principal systems that have been developed as homogeneous catalysts for the direct arnination of nonactivated alkenes and alkynes (hydroamination) are discussed. The focus is on the different ways of activating the reactants and the challenges encountered during the development of the catalyst systems. The basic reaction mechanisms and the most recent applications of hydroamination reactions in organic syntheses are discussed.
Bibliography
- 1 J. March, Advanced Organic Chemistry, 4th ed., John Wiley & Sons, Inc., New York, 1992, p. 768, and references therein.
- 2 J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Sciences Books, Mill Valley, 1987, chapts. 7.4 and 17.1.
- 3 B. M. Trost and T. R. Verhoeven, in G. Wilkinson, F. G. A. Stone, and E. W. Abel, eds., Comprehensive Organometallic Chemistry, vol. 8, Pergamon, Oxford, 1982, p. 892, and references therein.
- 4 M. S. Gibson, S. Patai ed., The Chemistry of the Amino Group, Wiley-Interscience, New York, 1968, p. 61.
- 5 D. M. Roundhill, Cat. Today 92, 1 (1997).
- 6 T. E. Müller and M. Beller, Chem. Rev. 98, 675 (1998).
- 7
R. Taube, in
B. Cornils and
W. A. Herrmann, eds.,
Applied Homogenous Catalysis with Organometallic Compounds,
VCH,
Weinheim,
1996,
p. 507.
10.1002/9783527619351.ch2g Google Scholar
- 8 D. M. Roundhill, Chem. Rev. 92, 1 (1992).
- 9 H.-G. Padeken and E. Müller, eds., Methoden der Organischen Chemie, 4th ed., Georg Thieme Verlag, Stuttgart; P. Rademacher, vol. E15, 1993, p. 624; R. Hemmer and J. Unsin, vol. E18, 1986, p. 1027; F. Möller, vol. XI/1, 1957, p. 297; H. Kröper, vol. IV, 1955, p. 406.
- 10 J.-J. Brunet, D. Neibecker, and F. Niedercorn, J. Mol. Catal. 49, 235 (1989).
- 11 D. Steinborn and R. Taube, Z. Chem. 26, 349 (1986).
- 12 M. B. Gasc, A. Lattes, and J. J. Perie, Tetrahedron 39, 703 (1983).
- 13
I. A. Chekulaeva and
I. A. Kondrat'eva,
Russ. Chem. Rev.
34,
669
(1965).
10.1070/RC1965v034n09ABEH001552 Google Scholar
- 14 W. Reppe, Liebigs Ann. Chemie 601, 81 (1956).
- 15 M. Beller and C. Breindl, Tetrahedron 54, 6359 (1998).
- 16 G. P. Pez and J. E. Galle, Pure Appl. Chem. 57, 1917 (1985).
- 17 H. Lehmkuhl and D. Reinehr, J. Organomet. Chem. 55, 215 (1973).
- 18 T. Narita, N. Imai, and T. Tsuruta, Bull. Chem. Soc. Jpn. 46, 1242 (1973).
- 19 T. Narita, T. Yamaguchi, and T. Tsuruta, Bull. Chem. Soc. Jpn. 46, 3825 (1973).
- 20 A. M. Baranger, P. J. Walsh, and R. G. Bergman, J. Am. Chem. Soc. 115, 2753 (1993).
- 21 P. J. Walsh, F. J. Hollander, and R. G. Bergman, Organometallics 12, 3705 (1993).
- 22 P. L. McGrane, M. Jensen, and T. Livinghouse, J. Am. Chem. Soc. 114, 5459 (1992).
- 23 P. J. Walsh, A. M. Baranger, and R. G. Bergman, J. Am. Chem. Soc. 114, 1708 (1992).
- 24 A. T. Gilbert, B. L. Davis, T. J. Emge, and R. D. Broene, Organometallics 18, 2125 (1999).
- 25 M. R. Bürgstein, H. Berberich, and P. W. Roesky, Organometallics 17, 1452 (1998).
- 26 G. A. Molander and E. D. Dowdy, J. Org. Chem. 63, 8983 (1998).
- 27 G. A. Molander and E. D. Dowdy, J. Org. Chem. 64, 6515 (1999).
- 28 Y. W. Li and T. J. Marks, J. Am. Chem. Soc. 118, 9295 (1996).
- 29 Y. W. Li and T. J. Marks, Organometallics 15, 3770 (1996).
- 30 M. A. Giardello, V. P. Conticello, L. Brard, M. R. Gagne, and T. J. Marks, J. Am. Chem. Soc. 116, 10241 (1994).
- 31 M. R. Gagne, C. L. Stern, and T. J. Marks, J. Am. Chem. Soc. 114, 275 (1992).
- 32 M. R. Gagne and T. J. Marks, J. Am. Chem. Soc. 111, 4108 (1989).
- 33 S. Burling, L. D. Field, and B. A. Messerle, Organometallics 19, 87 (2000).
- 34 M. Beller, H. Trautwein, M. Eichberger, C. Breindl, and T. E. Müller, Eur. J. Inorg. Chem. 1121 (1999).
- 35
M. Beller,
H. Trautwein,
M. Eichberger,
C. Breindl,
J. Herwig,
T. E. Müller, and
O. R. Thiel,
Chem. Eur. J.
5,
1306
(1999).
10.1002/(SICI)1521-3765(19990401)5:4<1306::AID-CHEM1306>3.0.CO;2-4 CAS Web of Science® Google Scholar
- 36 J.-J. Brunet, Gazz. Chim. Ital. 127, 111 (1997).
- 37 E. M. Campi and W. R. Jackson, J. Organomet. Chem. 523, 205 (1996).
- 38 J.-J. Brunet, G. Commenges, D. Neibecker, and K. Philippot, J. Organomet. Chem. 469, 221 (1994).
- 39 J.-J. Brunet, D. Neibecker, and K. Philippot, Tetrahedron Lett. 34, 3877 (1993).
- 40 R. Dorta, P. Egli, F. Zürcher, and A. Togni, J. Am. Chem. Soc. 119, 10857 (1997).
- 41 S. Cacchi, V. Carnicelli, and F. Marinelli, J. Organomet. Chem. 475, 289 (1994).
- 42 A. L. Seligson and W. C. Trogler, Organometallics 12, 744 (1993).
- 43 A. Arcadi, S. Cacchi, and F. Marinelli, Tetrahedron Lett. 30, 2581 (1989).
- 44 A. L. Casalnuovo, J. L. Calabrese, and D. Milstein, J. Am. Chem. Soc. 110, 6738 (1988).
- 45 Y. Fukuda, K. Utimoto, and H. Nozaki, Heterocycles 25, 297 (1987).
- 46 K. Utimoto, Pure & Appl. Chem. 55, 1845 (1983).
- 47 B. Pugin and L. M. Venanzi, J. Organomet. Chem. 214, 125 (1981).
- 48 B. Åkermark, J. Bäckvall, L. S. Hegedus, K. Zetterberg, K. Siirala-Hansen, and K. Sjöberg, J. Organomet. Chem. 72, 127 (1974).
- 49
D. Rose,
Tetrahedron Lett.
41,
4197
(1972).
10.1016/S0040-4039(01)94274-1 Google Scholar
- 50
D. R. Coulson,
Tetrahedron Lett.
5,
429
(1971).
10.1016/S0040-4039(01)96459-7 Google Scholar
- 51 H. F. Koch, L. A. Girard, and D. M. Roundhill, Polyhedron 18, 2275 (1999).
- 52 H. Schaffrath-Plum, Ph.D. Thesis, RWTH Aachen, 1998, pp. 10 and 28.
- 53 B. W. Howk, E. L. Little, S. L. Scott, and G. M. Whitman, J. Am. Chem. Soc. 76, 1899 (1954).
- 54 R. J. Schlott, J. C. Falk, and K. W. Narducy, J. Org. Chem. 37, 4243 (1972).
- 55 T. Fujita, K. Suga, and S. Watanabe, Aust. J. Chem. 27, 531 (1974).
- 56 P. J. Walsh, F. J. Hollander, and R. G. Bergman, J. Am. Chem. Soc. 110, 8729 (1988).
- 57 Y. Li and T. J. Marks, J. Am. Chem. Soc. 15, 3770 (1996).
- 58 P. W. Roesky, C. L. Stern, and T. J. Marks, Organometallics 16, 4705 (1997).
- 59 S. Tian, V. M. Arredondo, C. L. Stern, and T. J. Marks, Organometallics 18, 2568 (1999).
- 60 N. L. Allinger and V. Zalkow, J. Org. Chem. 25, 701 (1960).
- 61 M. S. Eisen, T. Straub, and A. Haskel, J. Alloys Comp. 271, 116 (1998).
- 62 Y. Li and T. J. Marks, J. Am. Chem. Soc. 120, 1757 (1998).
- 63 Y. Li and T. J. Marks, J. Am. Chem. Soc. 118, 707 (1996).
- 64 V. M. Arredondo, F. E. McDonald, and T. J. Marks, J. Am. Chem. Soc. 120, 4871 (1998).
- 65 V. M. Arredondo, F. E. McDonald, and T. J. Marks, Organometallics 18, 1949 (1999).
- 66 V. M. Arredondo, S. Tian, F. E. McDonald, and T. J. Marks, J. Am. Chem. Soc. 121, 3633 (1999).
- 67
P. E. Blöchl,
H. M. Senn,
A. Togni,
Transition State Modeling for Catalysis,
(ACS Symposium Series 721),
Vol. 7,
American Chemical Society,
Washington, D.C.,
1999,
p. 88.
10.1021/bk-1999-0721.ch007 Google Scholar
- 68 C. Hahn, M. Spiegler, E. Herdtweck, and R. Taube, Eur. J. Inorg. Chem., 435 (1999).
- 69 A. L. Casalnuovo, J. C. Calabrese, and D. Milstein, Inorg. Chem. 26, 971 (1987).
- 70 D. Vasen, A. Salzer, F. Gerhards, H.-J. Gais, R. Stürmer, N. H. Bieler, and A. Togni, Organometallics 19, 539 (2000).
- 71 Y. Uchimaru, J. Chem. Soc., Chem. Commun., 1133 (1999).
- 72 H. Hirai, H. Sawai, and S. Makishima, Bull. Chem. Soc. Jpn. 43, 1148 (1970).
- 73 C. Hahn, J. Sieler, and R. Taube, Chem. Ber. 130, 939 (1997).
- 74 A. M. James and M. P. Lord, Macmillan's Chemical and Physical Data, The Macmillan Press Ltd., London, 1992.
- 75 F. R. Hartley, Chem. Rev. 73, 163 (1973).
- 76 P. E. M. Siegbahn, J. Phys. Chem. 100, 14672 (1996).
- 77 B. Åkermark, J.-E. Bäckvall, and K. Zetterberg, Acta Chim. Scand. B 36, 577 (1982).
- 78 L. S. Hegedus, B. Akermark, K. Zetterberg, and L. F. Olsson, J. Am. Chem. Soc. 106, 7122 (1984).
- 79 A. Panunzi, A. De Renzi, R. Palumbo, and G. Paiaro, J. Am. Chem. Soc. 91, 3879 (1969).
- 80 A. De Renzi, G. Paiaro, A. Panunzi, and L. Paolillo, Gazz. Chim. Ital. 102, 281 (1972).
- 81 E. Benedetti, A. De Renzi, G. Paiaro, A. Panunzi, and C. Pedone, Gazz. Chim. Ital. 102, 744 (1972).
- 82 T. E. Müller, M. Berger, M. Grosche, E. Herdtweck, and F. P. Schmidtchen, Organometallics 20, 4384 (2001).
- 83 C. M. Vogels, P. G. Hayes, M. P. Shaver, and S. A. Westcott, Chem. Commun., 51 (2000).
- 84 R. Q. Su and T. E. Müller, Tetrahedron 57 6027 (2001).
- 85
M. Tokunaga,
M. Eckert, and
Y. Wakatsuki,
Angew. Chem. Int., Ed.
38,
3222
(1999).
10.1002/(SICI)1521-3773(19991102)38:21<3222::AID-ANIE3222>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 86U.S. Pat. 3,758,586 (Sept. 11, 1973), D. R. Coulson, (to E. I. du Pont de Nemours & Co.).
- 87 T. E. Müller, M. Grosche, E. Herdtweck, A.-K. Pleier, E. Walter, and Y.-K. Yan, Organometallics 19, 170 (2000).
- 88 I. Kadota, A. Shibuya, L. M. Lutete, and Y. Yamamoto, J. Org. Chem. 64, 4570 (1999).
- 89 C. E. Castro, E. J. Gaughan, and D. C. Owsley, J. Org. Chem. 31, 4071 (1966).
- 90 F. E. McDonald and A. K. Chatterjee, Tetrahedron Lett. 38, 7687 (1997).
- 91 K. Utimoto, H. Miwa, and H. Nozaki, Tetrahedron Lett., 4277 (1981).
- 92 S. Arseniyadis and J. Gore, Tetrahedron Lett. 24, 3997 (1983).
- 93 S. Arseniyadis and J. Sartoretti, Tetrahedron Lett. 26, 729 (1985).
- 94 D. Lathbury and T. Gallagher, J. Chem. Soc. Chem. Commun., 114 (1986).
- 95 J.-T. Chen, Y.-K. Chen, J.-B. Chu, G.-H. Lee, and Y. Wang, Organometallics 16, 1476 (1997).
- 96 L. Besson, J. Goré, and B. Cazes, Tetrahedron Lett. 36, 3857 (1995).
- 97 M. Al-Masum, M. Meguro, and Y. Yamamoto, Tetrahedron Lett. 38, 6071 (1997).
- 98 U. Radhakrishnan, M. Al-Masum, and Y. Yamamoto, Tetrahedron Lett. 39, 1037 (1998).