Heme Proteins and Model Systems
Abstract
This article describes mechanistic aspects of the active intermediate formation and a variety of reactions catalyzed by peroxidases. In two-electron oxidations, a ferryl porphyrin π-cation radical intermediate (the so-called compound I) is generally involved, while one-electron oxidation of substrates such as amines and phenols could proceed even when the active species is compound II, which is one-electron reduced form of compound I (FeIVO species). Many efforts have been made to utilize peroxidases as two-electron oxidants rather than one-electron oxidation cataysts. Site-directed mutagenesis of peroxidases and myoglobin to construct highly efficient and enantioselective oxidation catalysts is an example of these efforts. In addition, random mutagenesis coupled with screening is a way of directed evolution to find biocatalysts suitable for desired oxidations. Chemical modification of amino acid residues and the heme prosthetic group is also an important strategy for the construction of enzymatic activities that are very different from those of the native enzymatic reactions.
Bibliography
- 1 A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt, Nature 409, 258–268 (2001).
- 2 S. Colonna, N. Gaggero, L. Casella, G. Carrea, and P. Pasta, Tetrahedron: Asymmetry 3, 95–106 (1992).
- 3 H. Fu, H. Kondo, Y. Ichikawa, G. C. Look, and C. H. Wong, J. Org. Chem. 57, 7265–7270 (1992).
- 4 E. J. Allain, L. P. Hager, L. Deng, and E. N. Jacobsen, J. Am. Chem. Soc. 115, 4415–4416 (1993).
- 5 A. F. Dexter, F. J. Lakner, R. A. Campbell, and L. P. Hager, J. Am. Chem. Soc. 117, 6412–6413 (1995).
- 6 A. Zaks and D. R. Dodds, J. Am. Chem. Soc. 117, 10419–10424 (1995).
- 7 F. J. Lakner, K. P. Cain, and L. P. Hager, J. Am. Chem. Soc. 119, 443–444 (1997).
- 8 M. Andersson, A. Willetts, and S. Allenmark, J. Org. Chem. 62, 8455–8458 (1997).
- 9 S. H. Hu and L. P. Hager, J. Am. Chem. Soc. 121, 872–873 (1999).
- 10 S. Colonna, N. Gaggero, C. Richelmi, and P. Pasta, Trends Biotechnol. 17, 163–168 (1999).
- 11 F. van Rantwijk and R. A. Sheldon, Curr. Opin. Biotechnol. 11, 554–564 (2000).
- 12
P. R. Ortiz de Montellano, ed.,
Cytochrome P450,
2nd ed.,
Plenum Press,
New York,
1995.
10.1007/978-1-4757-2391-5 Google Scholar
- 13
Y. Ishimura,
H. Shimada, and
M. Suematsu, eds.,
Oxygen Homeostasis and Its Dynamics,
Springer,
Tokyo,
1998.
10.1007/978-4-431-68476-3 Google Scholar
- 14 H. B. Dunford, Heme Peroxidases, Wiley-VCH, New York, 1999.
- 15 E. J. Mueller, P. Loida, and S. G. Sligar, in Ref. (12), pp. 83–124.
- 16 J. Peterson and S. E. Graham-Lorence, in Ref. (12), pp. 151–180.
- 17 P. R. Ortiz de Montellano, in Ref. (12), pp. 245–303.
- 18 J. Geigert, D. J. Dalietos, S. L. Neidleman, T. D. Lee, and J. Wadsworth, Biochem. Biophys. Res. Commun. 114, 1104–1108 (1983).
- 19 S. Hu and L. P. Hager, Biochem. Biophys. Res. Commun. 253, 544–546 (1998).
- 20 E. Baciocchi, O. Lanzalunga, and L. Manduchi, Chem. Commun. 1715–1716 (1999).
- 21 E. Baciocchi, M. Fabbrini, O. Lanzalunga, L. Manduchi, and G. Pochetti, Eur. J. Biochem. 268, 665–672 (2001).
- 22 O. Okazaki and F. P. Guengerich, J. Biol. Chem. 268, 1546–1552 (1993).
- 23 F. P. Guengerich, C. H. Yun, and T. L. Macdonald, J. Biol. Chem. 271, 27321–27329 (1996).
- 24 Y. Goto, Y. Watanabe, S. Fukuzumi, J. P. Jones, and J. P. Dinnocenzo, J. Am. Chem. Soc. 120, 10762–10763 (1998).
- 25 M. G. Boersma, J. L. Primus, J. Koerts, C. Veeger, and I. M. Rietjens, Eur. J. Biochem. 267, 6673–6678 (2000).
- 26 L. P. Hager, D. R. Morris, F. S. Brown, and H. Eberwein, J. Biol. Chem. 241, 1769–1777 (1966).
- 27 R. D. Libby, J. A. Thomas, L. W. Kaiser, and L. P. Hager, J. Biol. Chem. 257, 5030–5037 (1982).
- 28 J. Geigert, S. L. Neidleman, and D. J. Dalietos, J. Biol. Chem. 258, 2273–2277 (1983).
- 29 T. D. Lee, J. Geigert, D. J. Dalietos, and D. S. Hirano, Biochem. Biophys. Res. Commun. 110, 880–883 (1983).
- 30 V. Niedan, I. Pavasars, and G. Oberg, Chemosphere 41, 779–785 (2000).
- 31 H. Zhang and H. B. Dunford, Can. J. Chem. 71, 1990–1994 (1993).
- 32 R. P. Hanzlik and K.-H. J. Ling, J. Org. Chem. 55, 3992–3997 (1990).
- 33 R. P. Hanzlik and K.-H. J. Ling, J. Am. Chem. Soc. 115, 9363–9370 (1993).
- 34 M. A. Ator, S. K. David and P. R. Ortiz de Montellano, J. Biol. Chem. 262, 14954–14960 (1987).
- 35 M. A. Ator and P. R. Ortiz de Montellano, J. Biol. Chem. 262, 1542–1551 (1987).
- 36 P. R. Ortiz de Montellano, Ann. Rev. Pharmacol. Toxicol. 32, 89–107 (1992).
- 37 P. R. Ortiz de Montellano, Biochimie 77, 581–593 (1995).
- 38 M. Gajhede, D. J. Schuller, A. Henriksen, A. T. Smith, and T. L. Poulos, Nat. Struct. Biol. 4, 1032–1038 (1997).
- 39 M. Sundaramoorthy, J. Terner, and T. L. Poulos, Structure 3, 1367–1377 (1995).
- 40 B. C. Finzel, T. L. Poulos, and J. Kraut, J. Biol. Chem. 259, 13027–13036 (1984).
- 41 T. L. Poulos, B. C. Finzel, and A. J. Howard, J. Mol. Biol. 195, 687–700 (1987).
- 42 S. I. Ozaki and P. R. O. Demontellano, J. Am. Chem. Soc. 116, 4487–4488 (1994).
- 43 S. Ozaki and P. R. O. Demontellano, J. Am. Chem. Soc. 117, 7056–7064 (1995).
- 44 J. T. Groves and Y.-Z. Han, in Ref. (12), pp. 3–48.
- 45 Y. Watanabe, ed., High-Valent Intermediates., Vol. 4, Academic Press, San Diego, 1999, pp. 97–118.
- 46 Y. Watanabe and H. Fujii, eds., Characterization of High-Valent Oxo-Metalloporphyrins., Vol. 97, Springer Verlag, Berlin, 2000, pp. 62–89.
- 47 S. Ozaki, T. Matsui, P. M. Roach, and Y. Watanabe, Coord. Chem. Rev. 198, 39–59 (2000).
- 48 C. P. Scholes, Y. Liu, L. F. Fishel, M. F. Farnum, J. M. Mauro, and J. Kraut, Isr. J. Chem. 29, 85–92 (1989).
- 49 L. A. Fishel, M. F. Farnum, J. M. Mauro, M. A. Miller, J. Kraut, Y. J. Liu, X. L. Tan, and C. P. Scholes, Biochemistry 30, 1986–1996 (1991).
- 50 J. E. Huyett, P. E. Doan, R. Gurbiel, A. L. P. Houseman, M. Sivaraja, D. B. Goodin, and B. M. Hoffman, J. Am. Chem. Soc. 117, 9033–9041 (1995).
- 51 T. Egawa, H. Miki, T. Ogura, R. Makino, Y. Ishimura, and T. Kitagawa, FEBS Lett. 305, 206–208 (1992).
- 52 Z. S. Farhangrazi, R. Sinclair, L. Powers, and I. Yamazaki, Biochemistry 34, 14970–14974 (1995).
- 53 T. Egawa, D. A. Proshlyakov, H. Miki, R. Makino, T. Ogura, T. Kitagawa, and Y. Ishimura, J. Biol. Inorg. Chem. 6, 46–54 (2001).
- 54 T. L. Poulos, and J. Kraut, J. Biol. Chem. 255, 8199–8205 (1980).
- 55 D. K. Bhattacharyya, U. Bandyopadhyay, and R. K. Banerjee, J. Biol. Chem. 267, 9800–9804 (1992).
- 56 J. E. Erman, L. B. Vitello, M. A. Miller, A. Shaw, K. A. Brown, and J. Kraut, Biochemistry 32, 9798–9806 (1993).
- 57 D. K. Bhattacharyya, U. Bandyopadhyay, and R. K. Banerjee, J. Biol. Chem. 268, 22292–22298 (1993).
- 58 S. L. Newmyer and P. R. O. Demontellano, J. Biol. Chem. 270, 19430–19438 (1995).
- 59 S. L. Newmyer and P. R. O. deMontellano, J. Biol. Chem. 271, 14891–14896 (1996).
- 60 T. Poulos, Adv. Inorg. Biochem. 7, 1–36 (1987).
- 61 L. B. Vitello, J. E. Erman, M. A. Miller, J. Wang, and J. Kraut, Biochemistry 32, 9807–9818 (1993).
- 62 M. I. Savenkova, J. M. Kuo and P. R. O. de Montellano, Biochemistry 37, 10828–10836 (1998).
- 63 M. Tanaka, K. Ishimori, M. Mukai, T. Kitagawa, and I. Morishima, Biochemistry 36, 9889–9898 (1997).
- 64 T. Matsui, S. Ozaki, and Y. Watanabe, J. Am. Chem. Soc. 121, 9952–9957 (1999).
- 65 M. Filizola and G. H. Loew, J. Am. Chem. Soc. 122, 3599–3605 (2000).
- 66 H. B. Dunford, Redox Rep. 5, 169–171 (2000).
- 67 A. M. Lambeir and H. B. Dunford, J. Biol. Chem. 258, 13558–13563 (1983).
- 68 H. B. Dunford, A. M. Lambeir, M. A. Kashem, and M. Pickard, Arch. Biochem. Biophys. 252, 292–302 (1987).
- 69 R. D. Libby, T. M. Beachy, and A. K. Phipps, Biochemistry 31, 2194–2194 (1992).
- 70 R. D. Libby, T. M. Beachy, and A. K. Phipps, J. Biol. Chem. 271, 21820–21827 (1996).
- 71 R. D. Libby, J. Eckhaus, and D. A. Moniot, Biochemistry 39, 32 (2000).
- 72 T. Poulos, J. Cupp-Vickery, and H. Li, in Ref. (12), pp. 125–150.
- 73 Y. Watanabe and Y. Ishimura, J. Am. Chem. Soc. 111, 410–411 (1989).
- 74 P. R. Ortiz de Montellano, J. A. Fruetel, J. R. Collins, D. L. Camper, and G. H. Loew, J. Am. Chem. Soc. 113, 3195–3196 (1991).
- 75 J. A. Fruetel, J. R. Collins, D. L. Camper, G. H. Loew, and P. R. Ortiz de Montellano, J. Am. Chem. Soc. 114, 6987–6993 (1992).
- 76 B. B. Kim, V. V. Pisarev, and A. M. Egorov, Anal. Biochem. 199, 1–6 (1991).
- 77 N. Kunishima, K. Fukuyama, H. Matsubara, H. Hatanaka, Y. Shibano, and T. Amachi, J. Mol. Biol. 235, 331–344 (1994).
- 78 H. Sawai-Hatanaka, T. Ashikari, Y. Tanaka, Y. Asada, T. Nakayama, H. Minakata, N. Kunishima, K. Fukuyama, H. Yamada, and Y. Shibano, Biosci. Biotechnol. Biochem. 59, 1221–1228 (1995).
- 79 M. Tanaka, K. Ishimori, and I. Morishima, Biochemistry 38, 10463–10473 (1999).
- 80 E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland Publishing Co., Amsterdam, 1971.
- 81 G. N. J. Phillips, R. M. Arduini, B. A. Springer, and S. G. Sligar, Proteins: Struc. Func. Genet. 7, 358–365 (1990).
- 82 C. E. Catalano and P. R. Ortiz de Montellano, Biochemistry 26, 8373–8380 (1987).
- 83 J. C. Alvarez and P. R. O. Demontellano, Biochemistry 31, 8315–8322 (1992).
- 84 S. Adachi, S. Nagano, K. Ishimori, Y. Watanabe, I. Morishima, T. Egawa, T. Kitagawa, and R. Makino, Biochemistry 32, 241–252 (1993).
- 85 D. P. Hildebrand, J. C. Ferrer, H. L. Tang, M. Smith, and A. G. Mauk, Biochemistry 34, 11598–11605 (1995).
- 86 S. Adachi, S. Nagano, Y. Watanabe, K. Ishimori, and I. Morishima, Biochem. Biophys. Res. Commun. 180, 138–144 (1991).
- 87 T. Matsui, S. Nagano, K. Ishimori, Y. Watanabe, and I. Morishima, Biochemistry 35, 13118–13124 (1996).
- 88 K. D. Egeberg, B. A. Springer, S. A. Martinis, S. G. Sligar, D. Morikis, and P. M. Champion, Biochemistry 29, 9783–9791 (1990).
- 89 T. Matsui, S. Ozaki, E. Liong, G. N. Phillips, and Y. Watanabe, J. Biol. Chem. 274, 2838–2844 (1999).
- 90 S. Ozaki, T. Matsui, and Y. Watanabe, J. Am. Chem. Soc. 118, 9784–9785 (1996).
- 91 S. Ozaki, T. Matsui, and Y. Watanabe, J. Am. Chem. Soc. 119, 6666–6667 (1997).
- 92 T. Matsui, S. Ozaki, and Y. Watanabe, J. Biol. Chem. 272, 32735–32738 (1997).
- 93 T. Matsui, S. Ozaki, and Y. Watanabe, J. Am. Chem. Soc. 121, 9952–9957 (1999).
- 94 K. E. King and M. E. Winfield, J. Biol. Chem. 238, 1520–1528 (1963).
- 95 T. Yonetani, H. Yamamoto, and G. V. Woodrow, J. Biol. Chem. 249, 682–690 (1967).
- 96 J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo, and B. J. Evans, J. Am. Chem. Soc. 103, 2884 (1981).
- 97 J. T. Groves and Y. Watanabe, J. Am. Chem. Soc. 110, 8443 (1988).
- 98 X. Yi, M. Mroczko, K. M. Manoj, X. Wang, and L. P. Hager, Proc. Natl. Acad. Sci. U.S.A. 96, 12412–12417 (1999).
- 99 A. Conesa, F. van De Velde, F. van Rantwijk, R. A. Sheldon, C. A. van Den Hondel, and P. J. Punt, J. Biol. Chem. 276 17635–17640 (2001).
- 100 V. P. Miller, G. D. Depillis, J. C. Ferrer, A. G. Mauk, and P. R. O. Demontellano, J. Bio. Chem. 267, 8936–8942 (1992).
- 101 D. B. Goodin, M. G. Davidson, J. A. Roe, A. G. Mauk, and M. Smith, Biochemistry 30, 4953–4962 (1991).
- 102 M. A. Miller, L. Vitello, and J. E. Erman, Biochemistry 34, 12048–12058 (1995).
- 103 M. A. Miller, L. Geren, G. W. Han, A. Saunders, J. Beasley, G. J. Pielak, B. Durham, F. Millett, and J. Kraut, Biochemistry 35, 667–673 (1996).
- 104 V. W. Leesch, J. Bujons, A. G. Mauk, and B. M. Hoffman, Biochemistry 39, 10132–10139 (2000).
- 105 R. A. Musah and D. B. Goodin, Biochemistry 36, 11665–11674 (1997).
- 106 A. Gengenbach, S. Syn, X. T. Wang, and Y. Lu, Biochemistry 38, 11425–11432 (1999).
- 107 I. P. Petrounia and F. H. Arnold, Curr. Opin. Biotechnol. 11, 325–330 (2000).
- 108 F. H. Arnold, Nature 409, 253–257 (2001).
- 109 F. H. Arnold, P. L. Wintrode, K. Miyazaki, and A. Gershenson, Trends Biochem. Sci. 26, 100–106 (2001).
- 110 J. S. Olson, R. F. Eich, L. P. Smith, J. J. Warren, and B. C. Knowles, Artif. Cells Blood Substit. Immobil. Biotechnol. 25, 227–241 (1997).
- 111 L. Wan, M. B. Twitchett, L. D. Eltis, A. G. Mauk, and M. Smith, Proc. Natl. Acad. Sci. U.S.A. 95, 12825–12831 (1998).
- 112 A. Iffland, P. Tafelmeyer, C. Saudan, and K. Johnsson, Biochemistry 39, 10790–10798 (2000).
- 113 J. R. Cherry, M. H. Lamsa, P. Schneider, J. Vind, A. Svendsen, A. Jones, and A. H. Pedersen, Nat. Biotechnol. 17, 379–384 (1999).
- 114 H. Joo, Z. Lin, and F. H. Arnold, Nature 399, 670–673 (1999).
- 115 B. Morawski, Z. Lin, P. Cirino, H. Joo, G. Bandara, and F. H. Arnold, Protein Eng. 13, 377–384 (2000).
- 116 Z. Lin, T. Thorsen, and F. H. Arnold, Biotechnol. Prog. 16, 680 (2000).
- 117 S. K. Ludemann, V. Lounnas, and R. C. Wade, J. Mol. Biol. 303, 797–811 (2000).
- 118 C. A. Voigt, S. L. Mayo, F. H. Arnold, and Z. G. Wang, Proc. Natl. Acad. Sci. U.S.A. 98, 3778–3783 (2001).
- 119 S. R. Blanke and L. P. Hager, J. Biol. Chem. 265, 12454–12461 (1990).
- 120 D. K. Bhattacharyya, U. Bandyopadhyay, and R. K. Banerjee, J. Biol. Chem. 267, 9800–9804 (1992).
- 121 D. K. Bhattacharyya, U. Bandyopadhyay, and R. K. Banerjee, J. Biol. Chem. 268, 22292–22298 (1993).
- 122 A. T. Mevkh, K. A. Miroshnikov, N. D. Igumnova, and S. D. Varfolomeev, Biokhimiia 58, 1573–1579 (1993).
- 123 H. D. Youn, Y. I. Yim, K. Kim, Y. C. Hah, and S. O. Kang, J. Biol. Chem. 270, 13740–13747 (1995).
- 124 M. Urrutigoity, M. Baboulene, A. Lattes, J. Souppe, and J. L. Seris, Biochim. Biophys. Acta 1079, 209–213 (1991).
- 125 N. Kamiya, Y. Shiro, T. Iwata, T. Iizuka, and H. Iwasaki, J. Am. Chem. Soc. 113, 1826–1829 (1991).
- 126 Y. Shiro, T. Iwata, R. Makino, M. Fujii, Y. Isogai, and T. Iizuka, J. Biol. Chem. 268, 19983–19990 (1993).
- 127 K. Tsukahara and C. Kimura, Electroanal. Chem. 428, 67–70 (1997).
- 128 K. Tsukahara and K. Kikuchi, Chem. Lett. 913–914 (1998).
- 129 N. N. Ugarova, L. I. Brovko, G. D. Rozhkova, and I. V. Berezin, Biokhimiia 42, 1212–1220 (1977).
- 130 N. N. Ugarova, G. D. Rozhkova, T. E. Vasil'eva, and I. V. Berezin, Biokhimiia 43, 793–797 (1978).
- 131 N. N. Ugarova, G. D. Rozhkova, and I. V. Berezin, Biokhimiia 43, 1382–1389 (1978).
- 132 K. Takahashi, H. Nishimura, T. Yoshimoto, Y. Saito, and Y. Inada, Biochem. Biophys. Res. Commun. 121, 261–265 (1984).
- 133 O. Ryan, M. R. Smyth, and C. O. Fagain, Enzyme. Microb. Technol. 16, 501–505 (1994).
- 134 P. A. Mabrouk, J. Am. Chem. Soc. 117, 2141–2146 (1995).
- 135 S. Ozaki, Y. Inada, and Y. Watanabe, J. Am. Chem. Soc. 120, 8020–8025 (1998).
- 136 P. A. Mabrouk and T. G. Spiro, J. Am. Chem. Soc. 120, 10303–10309 (1998).
- 137 J. S. Thorson, V. W. Cornish, J. E. Barrett, S. T. Cload, T. Yano, and P. G. Schultz, Methods Mol. Biol. 77, 43–73 (1998).
- 138 H. H. Chung, D. R. Benson, and P. G. Schultz, Science 259, 806–809 (1993).
- 139 H. H. Chung, D. R. Benson, V. W. Cornish, and P. G. Schultz, Proc. Natl. Acad. Sci. U.S.A. 90, 10145–10149 (1993).
- 140 Y. Kimata, H. Shimada, T. Hirose, and Y. Ishimura, Biochem. Biophys. Res. Commun. 208, 96–102 (1995).
- 141 G. DeSantis and J. B. Jones, Curr. Opin. Biotechnol. 10, 324–330 (1999).
- 142 N. Newton, D. B. Morell, and L. Clarke, Biochim. Biophys. Acta 96, 476–486 (1965).
- 143 N. Wever and H. Plat, Biochim. Biophys. Acta 661, 235–239 (1981).
- 144 I. M. Kooter, A. J. Pierik, M. Merkx, B. A. Averill, N. Moguilevsky, A. Bollen, and R. Wever, J. Am. Chem. Soc. 119, 11542–11543 (1997).
- 145 J. Zeng and R. E. Fenna, J. Mol. Biol. 226, 185–207 (1992).
- 146 L. A. Andersson, S. A. Bylkas, and A. E. Wilson, J. Biol. Chem. 271, 3406–3412 (1996).
- 147 T. D. Rae and H. M. Goff, J. Am Chem. Soc. 118, 2103–2104 (1996).
- 148 G. D. DePillis, S. Ozaki, J. M. Kuo, D. A. Maltby, and P. R. Ortiz de Montellano, J. Biol. Chem. 272, 8857–8860 (1997).
- 149 C. Oxvig, A. R. Thomsen, M. T. Overgaard, E. S. Sorensen, P. Hojrup, M. J. Bjerrum, G. J. Gleich, and L. Sottrup-Jensen, J. Biol. Chem. 274, 16953–16958 (1999).
- 150 T. Hayashi, Y. Hitomi, T. Takimura, A. Tomokuni, T. Mizutani, Y. Hisaeda, and H. Ogoshi, Coord. Chem. Rev. 192, 961–974 (1999).
- 151 S. Neya, T. Kaku, N. Funasaki, Y. Shiro, T. Iizuka, K. Imai, and H. Hori, J. Biol. Chem. 270, 13118–13123 (1995).
- 152 S. Neya, N. Funasaki, and K. Imai, J. Biol. Chem. 263, 8810–8815 (1988).
- 153 T. Hayashi, T. Takimura, Y. Aoyama, Y. Hitomi, A. Suzuki, and H. Ogoshi, Inorg. Chim. Acta 276, 159–167 (1998).
- 154 F. Masuya and H. Hori, Biochim. Biophys. Acta 1203, 99–103 (1993).
- 155 E. A. Brucker, J. S. Olson, G. N. J. Phillips, Y. Dou, and M. Ikeda-Saito, J. Biol. Chem. 271, 25419–25422 (1996).
- 156 T. Hayashi, T. Ando, T. Matsuda, H. Yonemura, S. Yamada, and Y. Hisaeda, J. Inorg. Biochem. 82, 133–139 (2000).
- 157 I. Hamachi, S. Tsukiji, S. Shinkai, and S. Oishi, J. Am. Chem Soc. 121, 5500–5506 (1999).
- 158 J. Berglund, T. Pascher, J. R. Winkler, and H. B. Gray, J. Am. Chem. Soc. 119, 2464–2469 (1997).
- 159 I. Hamachi, T. Nagase, Y. Tajiri, and S. Shinkai, Bioconjugate Chem. 8, 862–868 (1997).
- 160 T. Hayashi, T. Takimura, and H. Ogoshi, J. Am. Chem. Soc. 117, 11606–11607 (1995).
- 161 T. Hayashi, T. Takimura, T. Ohara, Y. Hitomi, and H. Ogoshi, J. Chem. Soc. Chem. Commun. 2503–2504 (1995).
- 162 T. Hayashi, Y. Hitomi, and H. Ogoshi, J. Am. Chem. Soc. 120, 4910–4915 (1998).
- 163 T. Hayashi, Y. Hitomi, T. Ando, T. Mizutani, Y. Hisaeda, S. Kitagawa, and H. Ogoshi, J. Am. Chem. Soc. 121, 7747–7750 (1999).
- 164 S. Ozaki, H. J. Yang, T. Matsui, Y. Goto, and Y. Watanabe, Tetrahedron: Asymmetry 10, 183–192 (1999).
- 165 E. Hoft, H. J. Hamann, A. Kunath, W. Adam, U. Hoch, C. R. Sahamoller, and P. Schreier, Tetrahedron: Asymmetry 6, 603–608 (1995).
- 166 W. Adam, R. T. Fell, U. Hoch, C. R. Sahamoller, and P. Schreier, Tetrahedron: Asymmetry 6, 1047–1050 (1995).
- 167 W. Adam, M. Lazarus, U. Hoch, M. N. Korb, C. R. Saha-Moller, and P. Schreier, J. Org. Chem. 63, 6123–6127 (1998).
- 168 W. Adam, C. Mock-Knoblauch, and C. R. Saha-Moller, J. Org. Chem. 64, 4834–4839 (1999).
- 169 W. Adam, C. R. Saha-Moller, and K. S. Schmid, J. Org. Chem. 65, 1431–1433 (2000).
- 170 M. Sridhar, S. K. Vadivel, and U. T. Bhalerao, Tetrahedron Lett. 38, 5695–5696 (1997).
- 171 E. Bolzacchini, G. Brunow, S. Meinardi, M. Orlandi, B. Rindone, P. Rummakko, and H. Setala, Tetrahedron Lett. 39, 3291–3294 (1998).
- 172 M. S. Ayyagari, K. A. Marx, S. K. Tripathy, J. A. Akkara, and D. L. Kaplan, Macromolecules 28, 5192–5197 (1995).
- 173 R. S. Premachandran, S. Banerjee, X. K. Wu, V. T. John, G. L. McPherson, J. Akkara, M. Ayyagari, and D. Kaplan, Macromolecules 29, 6452–6460 (1996).
- 174 T. Fukuoka, H. Tonami, N. Maruichi, H. Uyama, S. Kobayashi, and H. Higashimura, Macromolecules 33, 9152–9155 (2000).
- 175 R. Nagarajan, S. Tripathy, J. Kumar, F. F. Bruno, and L. Samuelson, Macromolecules 33, 9542–9547 (2000).
- 176 R. Ikeda, J. Sugihara, H. Uyama, and S. Kobayashi, Macromolecules 29, 8702–8705 (1996).
- 177 K. Matsumoto, H. Takahashi, Y. Miyake, and Y. Fukuyama, Tetrahedron Lett. 40, 3185–3186 (1999).
- 178 I. Malnar and C. J. Sih, Tetrahedron Lett. 41, 1907–1911 (2000).
- 179 S. Kalliney and A. Zaks, Tetrahedron Lett. 36, 4163–4166 (1995).
- 180 S. H. Ahn, M. W. Duffel, and J. P. N. Rosazza, J. Nat. Prod. 60, 1125–1129 (1997).
- 181 A. Napolitano, S. Memoli, O. Crescenzi, and G. Prota, J. Org. Chem. 61, 598–604 (1996).
- 182 A. Napolitano, A. Palumbo, and M. d'Ischia, Tetrahedron 56, 5941–5945 (2000).
- 183 D. A. Moffet, L. K. Certain, A. J. Smith, A. J. Kessel, K. A. Bechwith, and M. H. Hecht, J. Am. Chem. Soc. 122, 7612–7613 (2000).