Fine Chemical Synthesis – Homogeneous
Johannes G. de Vries
DSM Fine Chemicals-Advanced Synthesis & Catalysis, Geleen, The Netherlands
Search for more papers by this authorJohannes G. de Vries
DSM Fine Chemicals-Advanced Synthesis & Catalysis, Geleen, The Netherlands
Search for more papers by this authorAbstract
Use of homogeneous catalysis for fine chemical production is rapidly expanding. Advantages of its use are high chemo-, regio-, and enantioselectivity, which can be tuned by ligand design. Use of catalysis also leads to cleaner production processes. A third adavantage are the mild conditions that are often possible, which allows the application of homogeneous catalysis as a late step in a total synthesis. Often protective groups are unnecessary.
While in the past homogeneous catalysis was mainly used for second-generation processes of rather large products, it is now increasingly used in the first production processes. This is related to an increased availability of catalysts with sufficient rate and stability. In addition, high throughput experimentation allows rapid screening of these catalysts.
While several hundred reactions are known that are catalyzed by homogeneous transition metal catalysts, only a limited number of these are applied for fine chemical production. They can be subdivided into four main classes: hydrogenation, carbon–carbon bond formation, carbon–heteroatom bond formation, and isomerization reactions. Important requirements are rate of the reaction, expressed as turnover frequency (TOF) and catalyst stability, expressed as turnover number (TON). Examples are given of many processes on scales varying from 1 to 10,000 ton/year.
Recycle of catalysts is rarely practiced in fine chemical production, as the extra unit operations involved does not outweigh the gains of a reuse of the catalyst. Immobilization of homogeneous transition metal catalysts often leads to loss of activity and selectivity. In addition catalyst deactivation makes this an unattractive option. Emphasis is on the development of very fast catalysts. The metal is usually sent to the producer for reclaiming and refining. Two-phase catalysis might be a viable option for catalyst recycle.
Double digit growth is expected in the coming years for the application of homogeneous catalysis in the production of fine chemicals.
Bibliography
- 1 R. A. Sheldon, J. Mol. Catal., A: Chem. 107, 75–83 (1996).
- 2
B. Cornils and
W. A. Herrmann, eds.,
Applied Homogeneous Catalysis with Organometallic Compounds,
Vols. 1 and 2,
VCH,
Weinheim,
1996.
10.1002/9783527619351 Google Scholar
- 3 M. Beller and C. Bolm, eds., Transition Metals for Organic Synthesis; Building Blocks and Fine Chemicals, Vols. 1 and 2, Wiley-VCH, 1998.
- 4 H. B. Kagan, Bull. Soc. Chim. France 846–853 (1988).
- 5
A. Mortreux and
F. Petit, eds.,
Industrial Applications of Homogeneous Catalysis,
D. Reidel Publishing Co.,
Dordrecht,
1988.
10.1007/978-94-009-3897-7_8 Google Scholar
- 6 G. W. Parshall and S. D. Ittel, Homogeneous Catalysis. The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes, 2nd ed., John Wiley & Sons, Inc., New York, 1992.
- 7
W. R. Moser and
D. W. Slocum eds.,
Homogeneous Transition Metal Catalyzed Reactions,
(Advances in Chemistry Series 230),
American Chemical Society,
Washington, D. C.,
1992.
10.1021/ba-1992-0230 Google Scholar
- 8
F. Diederich and
P. J. Stang, eds.,
Metal-Catalyzed Cross-coupling Reactions,
Wiley-VCH,
Weinheim,
1998.
10.1002/9783527612222 Google Scholar
- 9 C. Mercier and P. Chabardes, Pure Appl. Chem. 66, 1509–1518 (1994).
- 10 E. N. Jacobsen, A. Pfaltz, and H. Yamamoto, eds., Comprehensive Asymmetric Catalysis, Vols. 1–3, Springer, Berlin, 1999.
- 11 H.-U. Blaser, F. Spindler, and M. Studer, Appl. Catal. A 221, 119–143 (2001).
- 12
P. A. Chaloner,
M. A. Esteruelas, and
F. Joó,
Homogeneous Hydrogenation,
Kluwer Academic,
Dordrecht,
1994.
10.1007/978-94-017-1791-5 Google Scholar
- 13 J. M. Grosselin, C. Mercier, G. Allmang, and F. Grass, Organometallics 10, 2126–2133 (1991).
- 14 M. Hernandez and P. Kalck, J. Mol. Catal., A: Chem. 116, 131–146 (1997).
- 15U.S. Pat. 4,857,234 (Aug. 15, 1989), W. Heggie, P. R. Page, I. Villax, I. Ghatak, and M. Hursthouse (to Plurichemie Anstalt).
- 16 I. Villax and P. Page, in Proceedings of the 9th Iberoamerican Symposium on Catalysis, Vol. 1, 1984, pp. 446–452.
- 17 A. P. Couto Rosado , in Abstracts of the BACS Symposium at the Chemspec Europe '94, p. 61.
- 18 H. Takaya, T. Ohta, and R. Noyori, in I. Ojima, ed., Catalytic Asymmetric Synthesis, VCH Publishers, New York, 1993, pp. 1–39.
- 19
T. Ohkuma,
M. Kitamura, and
R. Noyori, in
I. Ojima, ed.,
Catalytic Asymmetric Synthesis,
2nd ed.,
VCH Publishers,
New York,
2000,
pp. 1–110.
10.1002/0471721506.ch1 Google Scholar
- 20 S. A. Laneman, in D. J. Ager, ed., Handbook of Chiral Chemicals, Marcel Dekker, Inc., New York, 1999, pp. 143–176.
- 21 H.-U. Blaser, B. Pugin, F. Spindler, M. Studer, S. Burkhardt, R. Hausel, and H. Landert, in W. Herrmann, ed., Synthetic Methods of Organometallic and Inorganic Chemistry, Vol. 10, Thieme, Stuttgart, 2002, pp. 78–93.
- 22 J. M. Brown, in Ref. (10), Vol. 1, pp. 121–182.
- 23 R. Selke and H. Pracejus, J. Mol. Catal. 37, 213–225 (1986).
- 24 W. Vocke, R. Hänel, and F.-U. Flöther, Chem. Tech. 39, 123–125 (1987).
- 25
A. Togni,
Angew. Chem.
108,
1581
(1996);
10.1002/ange.19961081307 Google ScholarChimia 50, 86–93 (1996).
- 26 R. R. Bader, P. Baumeister, and H.-U. Blaser, Chimia 50, 99–105 (1996).
- 27EP 624 587 (1994), J. Mc Garrity, F. Spindler, R. Fux, and M. Eyer (to Lonza).
- 28 R. Imwinkelried, Chimia 51, 300 (1997).
- 29 M. J. Burk and F. Bienewald, in Ref. (2), Vol. 2, pp. 13–25.
- 30 M. J. Burk, F. Bienewald, S. Challenger, A. Derrick, and J. A. Ramsden, J. Org. Chem. 64, 3290–3298 (1999).
- 31
M. Bulliard,
B. Laboue,
J. Lastennet, and
S. Roussiasse,
Org. Proc. Res. Dev.
5,
438–441
(2001).
10.1021/op010005w Google Scholar
- 32
D. A. Dobbs,
K. P. M. Vanhessche,
E. Brazi,
V. Rautenstrauch,
J.-Y. Lenoir,
J.-P. Genêt,
J. Wiles, and
S. H. Bergens,
Angew. Chem., Int. Ed.
39,
1992–1995
(2000).
10.1002/1521-3773(20000602)39:11<1992::AID-ANIE1992>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 33 M. T. Reetz, A. Gosberg, R. Goddard, and S.-H. Kyung, Chem. Commun. 2077–2078 (1998).
- 34 M. T. Reetz and T. Neugebauer, Angew. Chem., Int. Ed. 38, 179–181 (1999).
- 35 M. T. Reetz and T. Sell, Tetrahedron Lett. 41, 6333–6336 (2000).
- 36 C. Claver, E. Fernandez, A. Gillon, K. Heslop, D. J. Hyett, A. Martorell, A. G. Orpen, and P. G. Pringle, Chem. Commun. 961–962 (2000).
- 37
M. T. Reetz and
G. Mehler,
Angew. Chem., Int. Ed.
39,
3889–3890
(2000).
10.1002/1521-3773(20001103)39:21<3889::AID-ANIE3889>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 38 M. van den Berg, A. J. Minnaard, E. P. Schudde, J. van Esch, A. H. M. de Vries, J. G. de Vries, and B. L. Feringa, J. Am. Chem. Soc. 122, 11539–11540 (2000).
- 39 T. Ohkuma and R. Noyori, in Ref. (2), Vol. 2, pp. 25–69.
- 40 R. Noyori and H. Takaya, Acc. Chem. Res. 23, 345 (1990).
- 41 H. Kumobayashi, T. Miura, N. Sayo, T. Saito, and X. Zhang, Synlett 1055–1064 (2001).
- 42 H. Kumobayashi, Recl. Trav. Chim. Pays-Bas 115, 201–210 (1996).
- 43 D. J. Ager and S. A. Laneman, Tetrahedron: Asymmetry 8, 3327–3355 (1997).
- 44 R. Noyori, T. Ikeda, T. Ohkuma, M. Widhalm, M. Kitamura, H. Takaya, S. Akutagawa, N. Sayo, T. Saito, T. Taketomi, and H. Kumobayashi, J. Am. Chem. Soc. 111, 9134–9135 (1989).
- 45 R. Noyori, Acta Chem. Scand. 50, 380–390 (1996).
- 46 S. A. King, A. S. Thompson, A. O. King, and T. R. Verhoeven, J. Org. Chem. 57, 6689–6691 (1992).
- 47 R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed. 40, 41–73 (3001).
- 48EP 0 768 288 (1997), T. Murayama, T. Matsumoto, and T. Miura (to Takasago International Corp.).
- 49 F. Spindler and H.-U. Blaser, in Ref. (3), Vol. 2, pp. 69–80; also Ref. (10), Vol. 1, pp. 248–265.
- 50 V. I. Tararov, R. Kadyrov, T. H. Riermeier, and A. Börner, Chem. Commun. 1867–1868 (2000).
- 51 R. R. Bader, P. Baumeister, and H.-U. Blaser, Chimia 50, 99–105 (1996).
- 52 F. Spindler, B. Pugin, H.-P. Jalett, H.-P. Buser, U. Pittelkow, and H. U. Blaser, in R. E. Malz, ed., Catalysis of Organic Reactions (Chemical Industries, Vol. 68), Marcel Dekker, Inc. New York, 1996, p. 153.
- 53 M. Bulliard, in D. J. Ager, ed., Handbook of Chiral Chemicals, Marcel Dekker, Inc., New York, 1999, pp. 211–225.
- 54 G. Zassinovich, G. Mestroni, and S. Gladiali, Chem. Rev. 92, 1051–1069 (1992).
- 55 R. Noyori and S. Hashiguchi, Acc. Chem. Res. 30, 97–102 (1997).
- 56 S. Gladiali and G. Mestroni, in Ref. (3), Vol. 2, pp. 97–119.
- 57 M. J. Palmer and M. Wills, Tetrahedron: Asymmetry 10, 2045–2061 (1999).
- 58 C. F. de Grauw, J. A. Peters, H. van Bekkum, and J. Huskens, Synthesis 1007 (1994).
- 59WO 97/20789 (1997) and EP 0 916 637 (1999), T. Ikariya, S. Hashiguchi, J. Takehara, N. Uematsu, K. Matsumura, R. Noyori, and A. Fujii (to Japan Science and Technology Corp., NKK Corp., Takeda Chemical Industries, Ltd., Asahi Kasei Kogyo Kabushiki Kaisha, Takasago International Corp.).
- 60WO 98 42543 (1998), A. J. Blacker and B. J. Mellor (to Zeneca Ltd.).
- 61 A. J. Blacker, Lecture at Chirasource 2001, Philadelphia.
- 62 K. Mashima, T. Abe, and K. Tani, Chem. Lett. 1179–1200 1201–1202 (1998).
- 63
J. Falbe, ed.,
New Syntheses with Carbon Monoxide,
Springer,
Berlin,
1980.
10.1007/978-3-642-67452-5 Google Scholar
- 64 C. D. Frohning and C. W. Kohlpaintner, in Ref. (2), Vol. 1, pp. 29–104.
- 65 B. El Ali and H. Alper, in Ref. (2), Vol. 1, pp. 49–67.
- 66 G. Kiss, Chem. Rev. 101, 3435–3456 (2001).
- 67 M. Beller and A. Tafesh, in Ref. (2), Vol. 1, pp. 187–200.
- 68 D. J. Watson, in F. E. Herkes ed., Catalysis of Organic Reactions (Chemical Industries, Vol. 75), Marcel Dekker, Inc., New York, 1998, pp. 369–380.
- 69 J. McChesney, Spec. Chem. (6) 98 (1999).
- 70EP 0 323 141 (1989), U. Takaki, S. Aoki, Y. Yamamoto, and I. Hara (to Mitsui Toatsu Chemicals Inc.).
- 71 C. Botteghi, M. Marchetti, and S. Paganelli, in Ref. (3), Vol. 1, pp. 25–48.
- 72 P. W. N. M. van Leeuwen and C. Claver, eds., Rhodium Catalyzed Hydroformylation, Kluwer Academic Publishers, Dordrecht, 2000.
- 73 M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer, P. W. N. M. van Leeuwen, K. Goubitz, and J. Fraanje, Organometallics 14, 3081–3089 (1995).
- 74 A. J. Chalk, in P. N. Rylander, H. Greenfield, and R. L. Augustine, eds., Catalysis of Organic Reactions (Chemical Industries, Vol. 33), Marcel Dekker, Inc., New York, 1988, pp. 43–63.
- 75 C. Chapuis and D. Jacoby, Appl. Catal. A 221, 93–117 (2001).
- 76 H. Siegel and W. Himmele, Angew. Chem. 92, 182–187 (1980).
- 77 B. Cornils and W. A. Herrmann, in Ref. (2), Vol. 1, pp. 1–15.
- 78 G. Consiglio, in I. Ojima, ed., Catalytic Asymmetric Synthesis, VCH Publishers, New York, 1993, pp. 273–302.
- 79 K. Nozaki, in Ref. (10), Vol. 1, pp. 382–413.
- 80
K. Nozaki and
I. Ojima, in
I. Ojima, ed.,
Catalytic Asymmetric Synthesis,
2nd ed.,
VCH Publishers,
New York,
2000,
pp. 429–463.
10.1002/0471721506.ch13 Google Scholar
- 81 C. G. Arena, F. Nicolò, D. Drommi, G. Bruno, and F. Faraone, Chem. Commun. 2251–2252 (1994).
- 82 M. Beller, in Ref. (2), Vol. 1, pp. 148–158.
- 83 P. Pollack and G. Romeder, in J. I. Kroschwitz and M. Howe-Grant, eds., Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 15, John. Wiley & Sons, Inc., New York, 1995, pp. 928–946.
- 84 M. Beller and A. F. Indolese, Chimia 55, 684–687 (2001).
- 85 M. Beller, W. Mägerlein, A. F. Indolese, and C. Fischer, Synthesis 1098–1109 (2001).
- 86 R. Schmid, Chimia 50, 110–113 (1996).
- 87 G. G. Wu, Y.-S. Wong, and M. Poirier, Org. Lett. 1, 745–747 (1999).
- 88Fr. Pat. 2 297 200 (1975), R. Perron (to Rhône-Poulenc SA); see also Ref. (4).
- 89 K. Kühlein and H. Geissler, in Ref. (2), Vol. 1, pp. 79–90.
- 90
M. Beller and
M. Eckert,
Angew. Chem., Int. Ed.
39,
1010–1027
(2000).
10.1002/(SICI)1521-3773(20000317)39:6<1010::AID-ANIE1010>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 91 I. P. Beletskaya and A. V. Cheprakov, Chem. Rev. 100, 3009–3066 (2000).
- 92 K. S. A. Vallin, M. Larhed, and A. Hallberg, J. Org. Chem. 66, 4340–4343 (2001).
- 93Dutch Pat. Appl. NL 1017138 (2002), A. H. M. de Vries and J. G. de Vries (to DSM NV).
- 94
K. Köhler,
R. G. Heidenreich,
J. G. E. Krauter, and
J. Pietsch,
Chem. Eur. J.
8,
622–631
(2002).
10.1002/1521-3765(20020201)8:3<622::AID-CHEM622>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 95 M. Beller and A. Zapf, Synlett 792–793 (1998).
- 96 D. A. Albisson, R. B. Bedford, S. E. Lawrence, and P. N. Scully, J. Chem. Soc., Chem. Commun. 2095–2096 (1998).
- 97 G. P. F. van Strijdonck, M. D. K. Boele, P. C. J. Kamer, J. G. de Vries, and P. W. N. M. van Leeuwen, Eur. J. Inorg. Chem. 1073–1076 (1999).
- 98 J. G. de Vries, Canad. J. Chem. 79, 1086–1092 (2001).
- 99 C. E. Tucker and J. G. de Vries, Topics Catal. 19, 111–118 (2002).
- 100WO 02 000340 (2002), F. J. Parlevliet, J. G. de Vries, and A. H. M. de Vries (to DSM NV).
- 101 E. Negishi, in Ref. (8), pp. 1–47.
- 102 E. Negishi and F. Liu, in Ref. (8), p. 12.
- 103 T. N. Mitchell, in Ref. (8), pp. 167–202.
- 104 H. Geissler, in Ref. (3), Vol. 1, pp. 158–183.
- 105 A. Suzuki, in Ref. (8), pp. 49–97.
- 106 A. Suzuki, in J. Tsuji, ed., Perspectives in Organometallic Chemistry for the XXI Century, Elsevier, Amsterdam, 1999, pp. 147–168.
- 107 K. Sonogashira, in Ref. (8), pp. 203–229.
- 108 U. Beutler, J. Mazacek, G. Penn, B. Schenkel, and D. Wasmuth, Chimia 50, 154–156 (1996).
- 109
L. Botella and
C. Nájera,
Angew. Chem., Int. Ed.
41,
179–181
(2002), and references contained herein.
10.1002/1521-3773(20020104)41:1<179::AID-ANIE179>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 110 J. A. Miller and R. P. Farrell, Tetrahedron Lett. 39, 6441–6444 (1998).
- 111 J. A. Miller and R. P. Farrell, Tetrahedron Lett. 39, 7275–7278 (1998).
- 112 C. Giordano, in Abstracts of the Conference “Selectivity in Metal Promoted Catalytic Processes,” Peñíscola, Spain, 1995.
- 113U.S. Pat. 5,312,975, (1992), C. Giordano, L. Coppi, and F. Minisci (to Zambon).
- 114 E. Poetsch, Kontakte (Darmstadt) 15–28 (1988).
- 115 J.-E. Bäckvall, in Ref. (8), pp. 339–385.
- 116 N. Yoshimura, in Ref. (2), Vol. 1, pp. 351–358.
- 117 M. P. Doyle, in I. Ojima, ed., Catalytic Asymmetric Synthesis, VCH Publishers, New York, 1993, pp. 63–99; also in 2nd ed., 2000, pp. 191–228.
- 118 A. F. Noels and A. Demonceau, in Ref. (2), Vol. 2, pp. 733–747.
- 119 A. Pfaltz, in Ref. (3), Vol. 1, pp. 100–113.
- 120 G. W. Parshall and W. A. Nugent, CHEMTECH 6, 376–383 (1988).
- 121 F. Kakiuchi and S. Murai, in S. Murai, ed., Topics in Organometallic Chemistry, Vol. 3, Springer, Berlin, 1999, pp. 47–79.
- 122 C. Jia, T. Kitamura, and Y. Fujiwara, Acc. Chem. Res. 34, 633–639 (2001).
- 123 M. D. K. Boele, G. P. F. van Strijdonck, A. H. M. de Vries, P. C. J. Kamer, J. G. de Vries, and P. W. N. M. van Leeuwen, J. Am. Chem. Soc. 124, 1586–1587 (2002).
- 124
R. A. Sheldon, in
R. A. Sheldon and
R. A. van Santen, eds.,
Catalytic Oxidation, Principles and Applications,
World Scientific,
Singapore,
1995,
pp. 239–265.
10.1142/9789814503884_0011 Google Scholar
- 125 R. W. Fischer and F. Röhrscheid, in Ref. (2), Vol. 1, pp. 439–464.
- 126 W. Bernhagen, in Abstracts of the BACS Symposium at Chemspec Europe '96, pp. 15–24.
- 127Aust. Pat. Appl. A,825/2001, W. Jary, P. Pöchlauer, M. Hartmann, E. Perndorfer, M. Rössler, and P. Alsters (to DSM NV).
- 128 R. W. Fischer, W. A. Herrmann, and T. Weskamp, in Ref. (3), Vol. 2, pp. 282–290.
- 129 G. Schlingloff and C. Bolm, in Ref. (3), Vol. 2, pp. 193–199.
- 130 H. Grennberg and J.-E. Bäckvall, in Ref. (3), Vol. 2, pp. 200–212.
- 131 R. Jira, in Ref. (2), Vol. 1, pp. 394–410.
- 132 S. Murahashi, T. Naota, T. Kuwabara, T. Saito, H. Kumobayashi, and S. Akutagawa, J. Am. Chem. Soc. 112, 7820 (1990).
- 133 I. E. Markó, P. R. Giles, M. Tsukazaki, S. M. Brown, and C. J. Urch, in Ref. (2), Vol. 2, pp. 350–360.
- 134 R. A. Sheldon, I. W. C. E. Arends, and A. Dijksman, Catal. Today 57(1/2), 157–166 (2000).
- 135 P. L. Anelli, Org. Synth 69, 212–219 (1990).
- 136
P. Chaudhuri,
M. Hess,
T. Weyhermuller, and
K. Wieghardt,
Angew. Chem., Int. Ed.
38,
1095–1098
(1999).
10.1002/(SICI)1521-3773(19990419)38:8<1095::AID-ANIE1095>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 137 K. Sato, M. Aoki, J. Takagi, and R. Noyori, J. Am. Chem. Soc. 119, 12386–12387 (1997).
- 138 P. Lappe and E. Schulz, in Ref. (2), Vol. 1, pp. 424–429.
- 139 D. J. Ager, in D. J. Ager, ed., Handbook of Chiral Chemicals, Marcel Dekker, Inc., New York, 1999, pp. 143–176.
- 140 T. Kratz and W. Zeiss, in W. Adam, ed., Peroxide Chem., Wiley-VCH Verlag GMbH, Weinheim, 2000, pp. 41–59.
- 141 R. Hage, J. E. Iburg, J. Kerschner, J. H. Koek, E. L. M. Lempers, R. J. Martens, U. S. Racherla, S. W. Russell, T. Swarthoff, M. R. P. van Vliet, J. B. Warnaar, L. van der Wolf, and B. Krijnen, Nature 369, 637–639 (1994).
- 142 D. E. de Vos and T. Bein, Chem. Commun. 917–918 (1996).
- 143 D. E. de Vos, B. E. Sels, M. Reynaers, Y. V. S. Rao, and P. A. Jacobs, Tetrahedron Lett. 39, 3221–3224 (1998).
- 144 B. S. Lane and K. Burgess, J. Am. Chem. Soc. 123, 2933–2934 (2001).
- 145 R. W. Fischer and W. A. Herrmann, in Ref. (3), Vol. 2, pp. 341–349.
- 146 H. Adolfsson, A. Converso, and K. B. Sharpless, Tetrahedron Lett. 40, 3991–3994 (1999).
- 147 R. A. Johnson and K. B. Sharpless, in I. Ojima, ed., Catalytic Asymmetric Synthesis, VCH Publishers, New York, 1993, pp. 103–158.
- 148 W. P. Shum and M. J. Cannarsa, in A. N. Collins, G. N. Sheldrake, and J. Crosby, eds., Chirality in Industry II, John Wiley & Sons, Inc., New York, 1997, pp. 363–380.
- 149 H. B. Kagan, in I. Ojima, ed., Catalytic Asymmetric Synthesis, VCH Publishers, New York, 1993, pp. 203–226.
- 150
T. Katsuki, in
I. Ojima, ed.,
Catalytic Asymmetric Synthesis,
2nd ed.,
VCH Publishers,
New York,
2000,
pp. 287–325.
10.1002/0471721506.ch9 Google Scholar
- 151 E. N. Jacobsen and M. H. Wu, in Ref. (10), pp. 649–677.
- 152 K. B. M. Janssen, R. F. Parton, and P. Jacobs, Tetrahedron: Asymmetry 8, 3039–3042 (1997).
- 153 E. N. Jacobsen, Acc. Chem. Res. 33, 421–431 (2000).
- 154 C. Curran, Chem. Ind. (London) 364 (2001).
- 155 M. Frohn and Y. Shi, Synthesis 1979–2000 (2000).
- 156 M. Beller and K. B. Sharpless, in Ref. (2), Vol. 2, pp. 1009–1024.
- 157 H. C. Kolb and K. B. Sharpless, in Ref. (3), Vol. 2, pp. 219–239.
- 158
C. Dobler,
G. Mehltretter, and
M. Beller,
Angew. Chem., Int. Ed.
38,
3026
(1999).
10.1002/(SICI)1521-3773(19991018)38:20<3026::AID-ANIE3026>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 159 S. Y. Jonsson, K. Faernegrdh, and J.-E. Bäckvall, J. Am. Chem. Soc. 123, 1365–1371 (2001).
- 160 H. C. Kolb and K. B. Sharpless, in Ref. (2), Vol. 2, pp. 243–260.
- 161
J. F. Hartwig,
Angew. Chem., Int. Ed.
37,
2047–2067
(1998).
10.1002/(SICI)1521-3773(19980817)37:15<2090::AID-ANIE2090>3.0.CO;2-A Google Scholar
- 162 J. P. Wolfe, S. Wagaw, J.-F. Marcoux, and S. L. Buchwald, Acc. Chem. Res. 31, 805–818 (1998).
- 163 B. H. Yang and S. L. Buchwald, J. Organomet. Chem. 576, 124–146 (1999).
- 164 M. Beller, T. H. Riermeier, C.-P. Reisinger, and W. A. Herrmann, Tetrahedron Lett. 38, 2073–2074 (1998).
- 165 J. P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc. 119, 6054–6058 (1997).
- 166 J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H. Shaugnessy, and L. M. Alcazar-Roman, J. Org. Chem. 64, 5575–5580 (1999).
- 167
J. P. Wolfe and
S. L. Buchwald,
Angew. Chem., Int. Ed.
38,
2413–2416
(1999).
10.1002/(SICI)1521-3773(19990816)38:16<2413::AID-ANIE2413>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 168 X. Bei, A. S. Guram, H. W. Turner, and W. H. Weinberg, Tetrahedron Lett. 40, 1237–1240 (1999).
- 169 J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, and S. L. Buchwald, J. Org. Chem. 65, 1158–1174 (2000).
- 170 G. A. Grasa, M. S. Viciu, J. Huang, and S. P. Nolan, J. Org. Chem. 66, 7729–7737 (2001).
- 171 X. Huang and S. L. Buchwald, Org. Lett. 3, 3417–3419 (2001).
- 172 D. Ma, Y. Zhang, J. Yao, S. Wu, and F. Tao, J. Am. Chem. Soc. 120, 12459–12467 (1998).
- 173 A. McKillop, B. D. Howarth, and R. J. Kobylecki, Syn. Commun. 4, 35–43 (1974).
- 174 H. L. Aalten, G. van Koten, D. M. Grove, T. Kuilman, O. G. Piekstra, L. A. Hulshof, and R. A. Sheldon, Tetrahedron 45, 5565–5578 (1989).
- 175 A. Aranyos, D. W. Old, A. Kiyomori, J. P. Wolfe, J. P. Sadighi, and S. L. Buchwald, J. Am. Chem. Soc. 121, 4369–4378 (1999).
- 176 J. van Soolingen, Ph. D. Dissertation, University of Utrecht, 1999.
- 177EP 613719 (1994), J. van Soolingen, L. Brandsma, and C. G. Kruse (to Duphar International Research).
- 178 W. A. Hermann, in Ref. (2), Vol. 2, pp. 980–991.
- 179 S. Akutagawa and K. Tani, in I. Ojima, ed., Catalytic Asymmetric Synthesis, VCH Publishers, New York, 1993, pp. 41–99.
- 180 S. Otsuka and K. Tani, in Ref. (3), Vol. 1, pp. 147–157.
- 181 F. F. Huerta, A. B. E. Minidis, and J. E. Bäckvall, Chem. Soc. Rev. 30, 321–331 (2001).
- 182WO 01 090396 (Nov. 29, 2001), G. K. M. Verzijl, J. G. de Vries, and Q. B. Broxterman (to DSM NV).
- 183 M. J. Hateley, D. A. Schichl, H.-J. Kreuzfeld, and M. Beller, Tetrahedron Lett. 41, 3821–3824 (2000).
- 184 M. J. Hateley, J. Martin, D. A. Schichl, C. Fischer, and M. Beller, Synlett. 25–28 (2001).
- 185 H.-U. Blaser, B. Pugin, and F. Spindler, in Ref. (2), Vol. 2, pp. 992–1009.
- 186 B. Cornils and W. A. Herrmann, eds., Aqueous Phase Organometallic Catalysis-Concepts and Applications, Wiley-VCH, Weinheim, 1998.
- 187 I. T. Horváth, Acc. Chem. Res. 31, 641 (1998).
- 188 H. Olivier, in Ref. (186), pp. 555–563.
- 189 R. Sheldon, Chem. Commun. 2399–2407 (2001).
- 190WO 9419104 (1994), H. W. Dechman, E. Kantner, J. R. Livingston Jr., M. G. Matturro, and E. J. Mozeleski (to Exxon).
- 191
N. J. Hovestad,
E. B. Eggeling,
H. J. Heidbuchel,
J. T. B. H. Jastrzebski,
U. Kragl,
W. Keim,
D. Vogt, and
G. van Koten,
Angew. Chem., Int. Ed.
38,
1655–1658
(1999).
10.1002/(SICI)1521-3773(19990601)38:11<1655::AID-ANIE1655>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar