Esterification - Biological
Robert Lortie
National Research Council Canada, Biotechnology Research Institute, Montreal, Canada
Search for more papers by this authorRobert Lortie
National Research Council Canada, Biotechnology Research Institute, Montreal, Canada
Search for more papers by this authorAbstract
The biochemical reactions leading to ester synthesis in living organisms are very difficult to use in vitro. However, esters can be obtained through other enzyme-catalyzed reactions. In condensation reactions, or reverse hydrolysis, alcohol and acid molecules react to form the ester. In transesterification, existing esters are modified to produce new esters. The enzymes used for these reactions are various hydrolases: esterases, lipases, and proteases, lipases being the most useful. To minimize the hydrolysis of the produced esters, these reactions are often performed in low water environments, such as organic solvents, using solid or immobilized enzymes. These conditions have an impact on the catalytic activity of enzymes.
Enzyme-catalyzed esterification is very selective and performed in mild conditions, compared to chemical esterification. It can be applied to the modification of oils and fats, the production of chemicals such as nonionic surfactants, flavors, and fragrances, the production of chiral molecules, and the modification of natural compounds.
Bibliography
- 1 J. H. Kastle and A. S. Loevenhart, Am. Chem. J. 24, 491–525 (1900).
- 2 E. A. Sym, Biochem. J. 30, 609–617 (1936).
- 3 F. Ergan, M. Trani, and G. André, J. Am. Oil Chem. Soc. 68, 412–417 (1991).
- 4 S. Lamare and M.-D. Legoy, Trends Biotechnol. 11, 413–418 (1993).
- 5 S. Lamare, B. Caillaud, K. Roule, I. Goubet, and M.-D. Legoy, Biocatal. Biotransform. 19, 361–377 (2001).
- 6 A. J. Mesiano, E. J. Beckman, and A. J. Russell, Chem. Rev. 99, 623–633 (1999).
- 7 H. R. Hobbs and N. R. Thomas, Chem. Rev. 107, 2786–2820 (2007).
- 8
G. Carrea and
S. Riva,
Angew. Chem. Int. Ed.
39,
2226–2254
(2000).
10.1002/1521-3773(20000703)39:13<2226::AID-ANIE2226>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 9 D. E. Stevenson and A. C. Storer, Biotechnol. Bioeng. 37, 519–527 (1991).
- 10 D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, M. Harel, S. J. Remington, I. Silman, J. D. Schrag, J. L. Sussman, K. H. G. Vernschueren, and A. Glodman, Prot. Eng. 5, 197–211 (1992).
- 11 C. M. L. Carvalho, M. R. Aires-Barros, and J. M. S. Cabral, Biotechnol. Bioeng. 66, 17–34 (1999).
- 12 E. M. Anderson, K. M. Larsson, and O. Kirk, Biocatal. Biotransform. 16, 181–204 (1998).
- 13 W. Chulalaksananukul, J. S. Condoret, P. Delorme, and R.-M. Willemot, FEBS Lett. 276, 181–184 (1990).
- 14 Y. Inada, K. Takahashi, T. Yoshimoto, A. Ajima, A. Matsushima, and Y. Saito, Trends Biotechnol. 4, 190–194 (1986).
- 15 A. Zaks and A. M. Klibanov, J. Biol. Chem. 263, 3194–3201 (1988).
- 16 K. Griebenow and A. M. Klibanov, Proc. Natl. Acad. Sci. USA 92, 10969–10976 (1995).
- 17 K. Dabulis and A. M. Klibanov, Biotechnol. Bioeng. 41, 566–571 (1993).
- 18
M. T. Ru,
J. S. Dordick,
J. A. Reimer, and
D. S. Clark,
Biotechnol. Bioeng.
63,
233–241
(1999).
10.1002/(SICI)1097-0290(19990420)63:2<233::AID-BIT12>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 19 E. Wehtje, P. Adlercreutz, and B. Mattiasson, Biotechnol. Bioeng. 41, 171–178 (1993).
- 20 J. A. Bosley and A. D. Peilow, J. Am. Oil Chem. Soc. 74, 107–111 (1997).
- 21 A. L. Margolin, Trends. Biotechnol. 14, 223–230 (1996).
- 22 R. A. Sheldon, Biochem. Soc. Trans. 35, 1583–1587 (2007).
- 23 WO Appl. WO2006046865 (2006). W. R. K. Schoevaart, L. M. van Langen, R. T. M. van Den Dool, and J. W. L. Boumans.
- 24 S. N. Timasheff, Annu. Rev. Biophys. Biomol. Struct. 22, 67–97 (1993).
- 25 D. B. Volkin, A. Staubli, R. Langer, and A. M. Klibanov, Biotechnol. Bioeng. 37, 843–853 (1991).
- 26 A. Zaks and A. M. Klibanov, J. Biol. Chem. 263, 8017–8021 (1988).
- 27 J. Broos, A. J. W. G. Visser, J. F. L. Engbersen, W. Verboom, A. van Hoek, and D. N. Reinhoudt, J. Am. Chem. Soc. 117, 12657–12663 (1995).
- 28 R. Affleck, Z. F. Xu, V. Suzawa, K. Focht, D. S. Clark, and J. S. Dordick, Proc. Natl. Acad. Sci. USA 89, 1100–1104 (1992).
- 29 S. Bone, Biochim. Biophys. Acta 916, 128–134 (1987).
- 30 P. J. Halling, Biochim. Biophys. Acta 1040, 225–228 (1992).
- 31 M. C. Parker, B. D. Moore, and A. J. Blacker, Biotechnol. Bioeng. 46, 452–458 (1995).
- 32
E. Wehtje and
P. Adlercreutz,
Biotechnol. Bioeng.
55,
798–806
(1997).
10.1002/(SICI)1097-0290(19970905)55:5<798::AID-BIT10>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 33 E. Wehtje and P. Adlercreutz, Biotechnol. Lett. 19, 537–540 (1997).
- 34 F. Ergan, M. Trani, and G. André, Biotechnol. Bioeng. 35, 195–200 (1990).
- 35 P. E. Napier, H. M. Lacerda, C. R. Rosell, R. H. Valivety, A. M. Vaidya, and P. J. Halling, Biotechnol. Prog. 12, 47–50 (1996).
- 36 A. Ducret, A. Giroux, M. Trani, and R. Lortie, Biotechnol. Bioeng. 48, 214–221 (1995).
- 37 E. Wehtje, J. Kaur, P. Adlercreutz, S. Chand, and B. Mattiasson, Enzyme Microbial Technol. 21, 502–510 (1997).
- 38
E. Zacharis,
I. C. Omar,
J. Partridge,
D. A. Robb, and
P. J. Halling,
Biotechnol. Bioeng.
55,
367–374
(1997).
10.1002/(SICI)1097-0290(19970720)55:2<367::AID-BIT14>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 39 P. J. Halling, Biotechnol. Tech. 6, 271–276 (1992).
- 40 S. A. Khan, P. J. Halling, and G. Bell, Enzyme Microbial Technol. 12, 453–458 (1990).
- 41
S. Lamare,
R. Lortie, and
M. D. Legoy,
Biotechnol. Bioeng.
56,
1–8
(1997).
10.1002/(SICI)1097-0290(19971005)56:1<1::AID-BIT1>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 42 P. A. Fitzpatrick, A. C. U. Steinmetz, D. Ringe, and A. M. Klibanov, Proc. Natl. Acad. Sci. USA 90, 8653–8657 (1993).
- 43 N. H. Yennawar, H. P. Yannawar, and G. K. Farber, Biochemistry 33, 7326–7336 (1994).
- 44 R. Rekker and H. M. de Kort, Eur. J. Med. Chem. Chim. Ther. 14, 479–488 (1979).
- 45 A. Ducret, M. Trani, and R. Lortie, Enzyme Microbial Technol. 22, 212–216 (1998).
- 46 P. Wangikar, J. O. Rich, D. S. Clark, and J. S. Dordick, Biochemistry 34, 12302–12310 (1995).
- 47 P. Wangikar, T. P. Graycar, D. A. Estell, D. S. Clark, and J. S. Dordick, J. Am. Chem. Soc. 115, 12231–12237 (1993).
- 48 F. H. Arnold, Acc. Chem. Res. 31, 125–131 (1998).
- 49 R. Fox, S. C. Davis, E. C. Mundorff, L. M. Newman, V. Gavrilovic, S. K. Ma, L. M. Chung, C. Ching, S. Tam, S. Muley, J. Grate, J. Gruber, J. C. Whitman, R. A. Sheldon, and G. W. Huisman, Nat. Biotechnol. 25, 338–344 (2007).
- 50
F. D. Gunstone,
J. Sci. Food Agric.
79,
1535–1549
(1999).
10.1002/(SICI)1097-0010(199909)79:12<1535::AID-JSFA430>3.0.CO;2-7 CAS Web of Science® Google Scholar
- 51
X. Xu,
Eur. J. Lipid Sci. Technol.
287–303
(2000).
10.1002/(SICI)1438-9312(200004)102:4<287::AID-EJLT287>3.0.CO;2-Q Google Scholar
- 52 K.-T. Lee and C. C. Akoh, Food Rev. Int. 14, 17–34 (1998).
- 53 A. Ducret, M. Pina, D. Montet, and J. Graille, Biotechnol. Lett. 14, 185–188 (1992).
- 54 D. Coulon and M. Ghoul, Agr-Food-Industry Hi-Tech 22–26 (1998).
- 55 D. K. Allen and B. Y. Tao, J. Surf. Deterg. 2, 383–390 (1999).
- 56 J. A. Rogers, Jr. and F. Fischetti, Jr., in Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 10, John Wiley & Sons, 1980, p. 456.
- 57 A. M. Klibanov, Acc. Chem. Res. 23, 114–120 (1990).
- 58 A. L. Margolin, Enzyme Microbial Technol. 15, 266–280 (1993).
- 59 R. Chênevert, N. Pelchat, and F. Jacques, Curr. Org. Chem. 10, 1067–1094 (2006).
- 60 R. Azerad and D. Buisson, Curr. Opin. Biotechnol. 11, 565–571 (2000).
- 61 R. A. Gross, A. Kumar, and B. Kalra, Chem. Rev. 101, 2097–2124 (2001).
- 62 A. Kumar, A. S. Kulshrestha, W. Gao, and R. A. Gross, Macromolecules 36, 8219–8221 (2003).
- 63 S. Kobayashi, Macromol. Rapid. Comm. 30, 237–266 (2009).
- 64 B. D. Martin, S. A. Ampofo, R. J. Linhardt, and J. S. Dordick, Macromolecules. 25, 7081–7085 (1992).
- 65 P. Villeneuve, Biotechnol. Adv. 25, 515–536 (2007).
- 66 Y. L. Khmelnitsky, C. Budde, J. M. Arnold, A. Usyatinsky, D. S. Clark, and J. S. Dordick, J. Am. Chem. Soc. 119, 11554–11555 (1997).
- 67 K. Matsumura, K. Kaihatsu, S. Mori, H. H. Cho, N. Kato, and S. H. Hyon, Biochim. Biophys. Res. Commun. 377, 1118–1122 (2008).
- 68 L. J. Lopez Giraldo, M. Laguerre, J. Lecomte, M. C. Figueroa-Espinoza, N. Barouh, B. Baréa, and P. Villeneuve, Enzyme Microbial Technol. 41, 721–726 (2007).
- 69 L. Greenspan, J. Res. Nat. Bur. Stand.—A Phys. Chem. 81A, 89–96 (1976).
- 70 R. H. Valivety, P. J. Halling, and A. R. Macrae, Biochim. Biophys. Acta 1118, 218–222 (1992).
Additional reading
- U. T. Bornscheur and R. J. Kazlauskas, Hydrolases in organic synthesis. Regio- and stereoselective biotransformations. 2nd Ed. Wiley-VCH, Weinheim, 2006.
-
A. J. J. Straathof and
P. Adlercreutz eds.
Applied biocatalysis
2nd Ed.,
Harwood Academic Publishers,
Amsterdam,
2000.
10.1201/9781482298420 Google Scholar
-
M. N. Gupta. ed.,
Methods in non-aqueous enzymology,
Birkhäuser,
Basel,
2000.
10.1007/978-3-0348-8472-3 Google Scholar
- E. N. Vulfson, P. J. Halling, and H. L. Holland. eds, Enzymes in nonaqueous solvents. Methods and protocols. Methods in Biotechnology, Vol. 15. Humana Press, Totowa, NJ, 2001.
- S. Hari Krishna, and N. G. Karanth, Catal. Rev.; 44, 499–591 (2002)