Cytochrome P450/Models
Jennifer Cheek
University of South Carolina, Columbia, South Carolina
Search for more papers by this authorEric D. Coulter
University of South Carolina, Columbia, South Carolina
Search for more papers by this authorJohn H. Dawson
University of South Carolina, Columbia, South Carolina
Search for more papers by this authorJennifer Cheek
University of South Carolina, Columbia, South Carolina
Search for more papers by this authorEric D. Coulter
University of South Carolina, Columbia, South Carolina
Search for more papers by this authorJohn H. Dawson
University of South Carolina, Columbia, South Carolina
Search for more papers by this authorAbstract
Cytochrome P450 is a monooxygenase that contains an iron heme active site. This enzyme catalyzes the activation of molecular oxygen with the resulting insertion of one oxygen atom into organic substrates. In order to understand how this catalytic system functions, it is essential to know the structure of the active site and the changes that this catalytic center undergoes during its reaction cycle. Over the past 40 years, this has been a subject of intense research and has resulted in an abundance of both structural and mechanistic knowledge. Several researchers have succeeded in mimicking many of the properties of cytochrome P450 using synthetic porphyrins and genetically engineered mutants of other well-characterized heme proteins. Furthermore, the activity of P450 can be manipulated extensively through the use of genetic engineering and carefully constructed substrates. However, P450 researchers continue to ask the fundamental question: how does the enzyme activate dioxygen? The involvement of an oxoferryl porphyrin π-cation radical as the “active oxygen” intermediate in the P450 reaction cycle has long been suspected, but it has not yet been observed during dioxygen- and substrate-dependent turnover of the enzyme. Nonetheless, by focusing on the similarities between P450 enzymes and the peroxidases, a significantly higher degree of understanding of P450 mechanism of action has been developed.
Bibliography
- 1 L.-L. Wong, Curr. Opin. Chem. Biol. 2, 263 (1998).
- 2 J. S. Valentine, in I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine, eds., Bioinorganic Chemistry, University Science Books, Mill Valley, Calif., 1994, p. 253.
- 3 M. Sono, M. P. Roach, E. D. Coulter, and J. H. Dawson, Chem. Rev. 96, 2841 (1996).
- 4 H. S. Mason, W. Fawlks, and J. Peterson, J. Am. Chem. Soc. 77, 2914 (1955).
- 5 O. Hayaishi, M. Katagiri, and S. Rothberg, J. Am. Chem. Soc. 77, 5450 (1955).
- 6 M. Klingenberg, Arch. Biochem. Biophys. 75, 376 (1958).
- 7 D. Garfinkel, Arch. Biochem. Biophys. 77, 493 (1958).
- 8 H. S. Mason, J. C. North, and M. Vanneste, Fed. Proc. 1172 (1965).
- 9 T. Omura and R. Sato, J. Biol. Chem. 239, 2370 (1964).
- 10 R. W. Estabrook, D. Y. Cooper, and O. Rosenthal, Biochem. Z. 338, 741 (1963).
- 11 T. Omura, Biochem. Biophys. Res. Commun. 266, 690 (1999).
- 12 F. P. Guengerich, Cancer Res. 48, 2946 (1988).
- 13 S. D. Nelson and P. G. Pearson, Annu. Rev. Pharmacol. Toxicol. 30, 169 (1990).
- 14 J. A. Peterson, personal communication. Reported at the Eleventh International Conference on Cytochrome P450, Sendai, Japan, September, 1999.
- 15
P. R. Ortiz de Montellano, ed.,
Cytochrome P450: Structure, Mechanism, and Biochemistry,
2nd ed.,
Plenum Press,
New York,
1995.
10.1007/978-1-4757-2391-5 Google Scholar
- 16 J. A. Peterson and S. E. Graham-Lorence, in Ref. (14), Chapt. 5, p. 151.
- 17 T. A. van der Hoeven, D. A. Haugen, and M. J. Coon, Biochem. Biophys. Res. Commun. 60, 569 (1974).
- 18 Y. Imai and R. Sato, Biochem. Biophys. Res. Commun. 60, 8 (1974).
- 19
I. C. Gunsalus,
J. R. Meeks,
J. D. Lipscomb,
P. G. Debrunner, and
E. Münck, in
O. Hayaishi, ed.,
Molecular Mechanisms of Oxygen Activation,
Academic Press,
New York,
1974,
p. 559.
10.1016/B978-0-12-333640-8.50019-8 Google Scholar
- 20 I. C. Gunsalus and G. C. Wagner, Methods Enzymol. 52, 166 (1978).
- 21 E. J. Mueller, P. J. Loida, and S. G. Sligar, in Ref. (14), Chapt. 3, p. 83.
- 22 T. L. Poulos, B. C. Finzel, I. C. Gunsalus, G. C. Wagner, and J. Kraut, J. Biol. Chem. 260, 16122 (1985).
- 23 J. H. Dawson, Science 240, 433 (1988).
- 24 T. L. Poulos, B. C. Finzel, and A. J. Howard, Biochemistry 25, 5314 (1986); T. L. Poulos, B. C. Finzel, and A. J. Howard, J. Mol. Biol. 127, 309 (1987).
- 25 H. Li, S. Narasimhulu, L. M. Havran, J. D. Winkler, and T. L. Poulos, J. Am. Chem. Soc. 117, 6297 (1995).
- 26 R. Raag and T. L. Poulos, Biochemistry 28, 7586 (1989).
- 27 I. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. E. Benson, R. M. Sweet, D. Ringe, G. A. Petsko, and S. G. Sligar, Science 287, 1615 (2000).
- 28 K. G. Ravichandran, S. S. Boddupalli, C. A. Haserman, J. A. Peterson, and J. Deisenhofer, Science 261, 731 (1993).
- 29 C. A. Haseman, K. G. Ravichandran, J. A. Peterson, and J. Deisenhofer, J. Mol. Biol. 236, 1169 (1994).
- 30 J. Cupp-Vickery and T. L. Poulos, Nat. Struct. Biol. 2, 144 (1995).
- 31 P. A. Williams, J. Cosme, V. Sridhar, E. F. Johnson, and D. E. McRee, Mol. Cell 5, 121 (2000).
- 32 T. L. Poulos, J. Cupp-Vickery, and H. Li, in Ref. (14), Chapt. 4, p. 125.
- 33 J. H. Dawson and M. Sono, Chem. Rev. 87, 1255 (1987).
- 34 C. B. Brewer and J. A. Peterson, J. Biol. Chem. 263, 791 (1988).
- 35 J. T. Groves and Y. Z. Han, in Ref. (14), Chapt. 1, p. 3.
- 36 T. D. Porter and M. J. Coon, J. Biol. Chem. 266, 13469 (1991).
- 37 P. R. Ortiz de Montellano, in Ref. (14), Chapt. 8, p. 245.
- 38 R. E. White and M. J. Coon, Annu. Rev. Biochem. 49, 315 (1980).
- 39 P. J. Loida and S. G. Sligar, Biochemistry 32, 11530 (1993).
- 40 S. Kadkhodayan, E. D. Coulter, D. M. Maryniak, T. A. Bryson, and J. H. Dawson, J. Biol. Chem. 270, 28042 (1995).
- 41 R. Raag and T. L. Poulos, in K. Ruckpaul and H. Rein, eds., Frontiers in Biotransformation, Akademie Verlag, Berlin, 1992, Chapt. 1, p. 1.
- 42 F. P. Guengerich, D. P. Ballou, and M. J. Coon, Biochem. Biophys. Res. Commun. 70, 951 (1976).
- 43 M. Akhtar and J. N. Wright, Nat. Prod. Rep. 1991, 527 (1991).
- 44 M. Akhtar, V. C. O. Njar, and J. N. Wright, J. Steroid Biochem. Mol. Biol. 44, 375 (1993).
- 45 M. Akhtar, D. Corina, S. Miller, A. Z. Shyadehi, and J. N. Wright, Biochemistry 33, 4410 (1994).
- 46 E. S. Roberts, A. D. N. Vaz, and M. J. Coon, Proc. Natl. Acad. Sci. U.S.A. 88, 8963 (1991).
- 47 J. M. Pratt, T. I. Ridd, and L. J. King, J. Chem. Soc., Chem. Commun. 297 (1995).
- 48 A. D. N. Vaz, S. J. Pernecky, G. M. Raner, and M. J. Coon, Proc. Natl. Acad. Sci. U.S.A. 93, 4644 (1996).
- 49 S. A. Martinis, W. M. Atkins, P. S. Stayton, and S. G. Sligar, J. Am. Chem. Soc. 111, 9252 (1989).
- 50 M. Imai, H. Shimada, Y. Watanabe, Y. Matsushima-Hibiya, R. Makino, H. Koga, T. Horiguchi, and Y. Ishimura, Proc. Natl. Acad. Sci. U.S.A. 86, 7823 (1989).
- 51 R. Davydov, I. D. G. Macdonald, T. M. Makris, S. G. Sligar, and B. M. Hoffman, J. Am. Chem. Soc. 121, 10654 (1999); R. Davydov, T. M. Makris, V. Kofman, D. E. Werst S. G. Sligar, and B. M. Hoffman, J. Am. Chem. Soc. 123, 1403 (2001).
- 52 I. G. Denisov, T. M. Makris, and S. G. Sligar, J. Biol. Chem. 276, 11648 (2001).
- 53 G. H. Loew, C. J. Kert, L. M. Hjelmeland, and R. F. Kirchner, J. Am. Chem. Soc. 99, 3534 (1977).
- 54 M. T. Green, J. Am. Chem. Soc. 121, 7939 (1999).
- 55 J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo, and B. J. Evans, J. Am. Chem. Soc. 103, 2884 (1981).
- 56 J. E. Penner-Hahn, T. McMurray, M. Renner, L. Latos-Grazynski, K. S. Eble, I. M. Davis, A. Balch, J. T. Groves, J. H. Dawson, and K. O. Hodgson, J. Biol. Chem. 258, 12761 (1983); J. E. Penner-Hahn, K. S. Eble, T. J. McMurry, M. Renner, A. L. Balch, J. T. Groves, J. H. Dawson, and K. O. Hodgson, J. Am. Chem. Soc. 108, 7819 (1986).
- 57 T. Egawa, H. Shimada, and Y. Ishimura, Biochem. Biophys. Res. Commun. 201, 1464 (1994).
- 58 G. C. Wagner, M. M. Palcic, and H. B. Dunford, FEBS Lett. 156, 244 (1983).
- 59 D. G. Kellner, S.-C. Hung, K. E. Weiss, and S. G. Sligar, J. Biol. Chem. 277, 9641 (2002).
- 60 M. M. Palcic, R. Rutter, T. Araiso, L. P. Hager, and H. B. Dunford, Biochem. Biophys. Res. Commun. 94, 1123 (1980).
- 61 V. Schünemann, C. Jung, A. X. Trautwein, D. Mandon, and R. Weiss, FEBS Lett. 179, 149 (2000).
- 62 I. S. Isaac and J. H. Dawson, Essays Biochem. 34, 51 (1999).
- 63 J. H. Dawson, R. H. Holm, J. R. Trudell, G. Barth, R. E. Linder, E. Bunnenberg, C. Djerassi, and S. C. Tang, J. Am. Chem. Soc. 98, 3707 (1976).
- 64 N. C. Gerber and S. G. Sligar, J. Am. Chem. Soc. 114, 8742 (1992).
- 65 N. C. Gerber and S. G. Sligar, J. Biol. Chem. 269, 4260 (1994).
- 66 Y. Kimata, H. Shimada, T. Hirose, and Y. Ishimura, Biochem. Biophys. Res. Commun. 208, 96 (1995).
- 67 H. Shimada, R. Makino, M. Imai, T. Horiuchi, and Y. Ishimura, in M. Nozaki, S. Yamamoto, and Y. Ishimura, eds., International Symposium on Oxygenases and Oxygen Activation, Yamada Science Foundation, Tokyo, 1990, p. 133.
- 68 D. E. Benson, K. S. Suslick, and S. G. Sligar, Biochemistry 36, 5104 (1997).
- 69 M. Vidakovic, S. G. Sligar, H. Y. Li, and T. L. Poulos, Biochemistry 37, 9211 (1998).
- 70 T. Sjodin, J. F. Christian, I. D. G. Macdonald, R. Davydov, M. Unno, S. G. Sligar, B. M. Hoffman, and P. M. Champion, Biochemistry 40, 6852 (2001).
- 71 T. L. Poulos, Adv. Inorg. Biochem. 7, 1 (1988).
- 72 S. L. Newmyer and P. R. Ortiz de Montellano, J. Biol. Chem. 270, 19430 (1995).
- 73 R. E. McMahon, H. R. Sullivan, J. C. Craig, and W. E. Pereira, Arch. Biochem. Biophys. 132, 575 (1969).
- 74 M. Hamberg and I. Bjorkhem, J. Biol. Chem. 246, 7411 (1971).
- 75 S. Shapiro, J. U. Piper, and E. Caspi, J. Am. Chem. Soc. 104, 2301 (1982).
- 76 J. Daly, Handbo. Exp. Pharmacol. 28, 285 (1971).
- 77 L. M. Hjelmeland, L. Aronow, and J. R. Trudell, Biochem. Biophys. Res. Commun. 76, 541 (1977).
- 78 J. T. Groves, G. A. McClusky, R. E. White, and M. J. Coon, Biochem. Biophys. Res. Commun. 81, 154 (1978).
- 79 J. T. Groves, J. Chem. Ed. 62, 928 (1985).
- 80 M. H. Gelb, D. C. Heimbrook, P. Mälkönen, and S. G. Sligar, Biochemistry 21, 370 (1982).
- 81 P. R. Ortiz de Montellano and R. A. Stearns, J. Am. Chem. Soc. 109, 3415 (1987).
- 82 P. R. Ortiz de Montellano, Trends Pharmacol. Sci. 10, 354 (1989).
- 83 J. K. Atkinson and K. U. Ingold, Biochemistry 32, 9209 (1993).
- 84 M. Newcomb, M. H. Le-Tadic, D. A. Putt, and P. F. Hollenberg, J. Am. Chem. Soc. 117, 3312 (1995).
- 85 M. Newcomb, M. H. Le-Tadic-Biadatti, D. L. Chestney, E. S. Roberts, and P. F. Hollenberg, J. Am. Chem. Soc. 117, 12085 (1995); M. Newcomb and P. H. Toy, Acc. Chem. Res. 33, 449 (2000).
- 86 J. P. Collman, T. N. Sorrell, and B. M. Hoffman, J. Am. Chem. Soc. 97, 913 (1975).
- 87 C. K. Chang and D. Dolphin, J. Am. Chem. Soc. 97, 5948 (1975).
- 88 S. C. Tang, S. Koch, G. C. Papaefthymiou, S. Forner, R. B. Frankel, J. A. Ibers, and R. H. Holm, J. Am. Chem. Soc. 98, 2414 (1976).
- 89 T. Higuchi, K. Shimada, N. Maruyama, and M. Hirobe, J. Am. Chem. Soc. 115, 7551 (1993).
- 90 Y. Urano, T. Higuchi, M. Hirobe, and T. Nagano, J. Am. Chem. Soc. 119, 12008 (1997).
- 91 L. P. Hager, P. F. Hollenberg, T. Rand-Meir, R. Chaing, and D. Doubek, Ann. N.Y. Acad. Sci. 244, 80 (1975).
- 92 B. W. Griffin, in J. Everse, K. E. Everse, and M. B. Grisham, eds., Peroxidases in Chemistry and Biology, CRC Press, Boca Raton, Fla., 1991, p. 85.
- 93 P. F. Hollenberg and L. P. Hager, J. Biol. Chem. 248, 2630 (1973).
- 94 M. Sono, J. H. Dawson, K. Hall, and L. P. Hager, Biochemistry 25, 347 (1986).
- 95 M. Sundaramoorthy, J. Terner, and T. L. Poulos, Structure 3, 1367 (1995).
- 96 S. Adachi, S. Nagano, K. Ishimori, Y. Watanabe, I. Morishima, T. Egawa, T. Kitagawa, and R. Makino, Biochemistry 32, 241 (1993).
- 97 T. Matsui, S. Nagano, K. Ishimori, Y. Watanabe, and I. Morishima, Biochemistry 35, 13118 (1996).
- 98 D. P. Hildebrand, J. C. Ferrer, H. L. Tang, M. Smith, and A. G. Mauk, Biochemistry 34, 11598 (1995).
- 99 J. Sigman, A. E. Pond, J. H. Dawson, and Y. Lu, Biochemistry 38, 11122 (1999).
- 100 D. Barrick, Biochemistry 33, 6546 (1994); G. D. DePhillis, S. M. Decatur, D. Barrick, and S. G. Boxer, J. Am. Chem. Soc. 116, 6981 (1994); M. P. Roach, S. Ozaki, and Y. Watanabe, Biochemistry, 39, 1446 (2000).
- 101 D. E. McRee, G. M. Jensen, M. M. Fitzgerald, H. A. Siegel, and D. B. Goodin, Proc. Natl. Acad. Sci. U.S.A. 91, 12847 (1994).
- 102 A. E. Pond, M. P. Roach, M. Sono, A. H. Rux, S. Franzen, R. Hu, M. R. Thomas, A. Wilks, Y. Dou, M. Ikeda-Saito, P. R. Ortiz de Montellano, W. H. Woodruff, S. G. Boxer, and J. H. Dawson, Biochemistry 38, 7601 (1999);
- 103 J. Sun, T. M. Loehr, A. Wilks, and P. R. Ortiz de Montellano, Biochemistry 33, 13734 (1994).
- 104 M. P. Roach, A. E. Pond, M. R. Thomas, S. G. Boxer, and J. H. Dawson, J. Am. Chem. Soc. 121, 12088 (1999).
- 105 M. Ator and P. R. Ortiz de Montellano, J. Biol. Chem. 262, 1542 (1987).
- 106 M. Ator, S. K. David, and P. R. Ortiz de Montellano, J. Biol. Chem. 264, 9250 (1989).
- 107 G. D. DePillis, B. P. Sishta, A. G. Mauk, and P. R. Ortiz de Montellano, J. Biol. Chem. 266, 19334 (1991).
- 108 S. I. Ozaki and P. R. Ortiz de Montellano, J. Am. Chem. Soc. 116, 4487 (1994).
- 109 M. Haurand and V. Ullrich, J. Biol. Chem. 260, 15059 (1985).
- 110 W. C. Song, C. D. Funk, and A. R. Brash, Proc. Natl. Acad. Sci. U.S.A. 90, 8519 (1993).
- 111 M. Gajhede, D. J. Schuller, A. Henriksen, A. T. Smith, and T. L. Poulos, Nat. Struct. Biol. 4, 1032 (1997).