Ammonia Synthesis—Homogeneous
Yusuke Shibata, Hidetake Seino, Yasushi Mizobe, Masanobu Hidai,
Masanobu Hidai
The University of Tokyo, Tokyo, Japan
Tokyo University of Science, Tokyo, Japan
Search for more papers by this authorYusuke Shibata, Hidetake Seino, Yasushi Mizobe, Masanobu Hidai,
Masanobu Hidai
The University of Tokyo, Tokyo, Japan
Tokyo University of Science, Tokyo, Japan
Search for more papers by this authorAbstract
Chemical N2 reducing systems to ammonia promoted by the transition metal complexes in solutions have been surveyed. This review includes the ammonia formation facilitated not only by the active transition metal species generated in situ but, more importantly, by the well-defined N2 complexes. The latter provides the important information about the mechanism for the chemical and biological nitrogen fixation and the clue to the development of new effective catalyst for N2 reduction.
Bibliography
- 1 G. Maxwell, Synthetic Nitrogen Products: A Practical Guide to the Products and Processes, Springer, Berlin, Germany, 2004.
- 2(a)
M. Appl,
Ammonia: Principles and Industrial Practice.
Wiley-VCH,
Weinheim, Germany,
1999;
10.1002/9783527613885 Google Scholar(b) J. R. Jennings, Catalytic Ammonia Synthesis: Fundamentals and Practice (Fundamental and Applied Catalysis), Springer, Berlin, Germany, 1991;10.1007/978-1-4757-9592-9 Google Scholar(c) S. E. Nielsen, in W. H. Flank, M. A. Abraham, and M. A. Matthews, eds., Innovations in Industrial and Engineering Chemistry, ACS Symposium Series 1000, American Chemical Society, Washington, D.C., 2009, pp. 15–39.
- 3(a) R. R. Schrock, Angew. Chem., Int. Ed. 47, 5512 (2008); (b) M. Hidai and Y. Mizobe, Can. J. Chem. 83, 358 (2005); (c) B. A. MacKay and M. D. Fryzuk, Chem. Rev. 104, 385 (2004); (d) S. Gambarotta and J. Scott, Angew. Chem., Int. Ed. 43, 5298 (2004); (e) F. Barriere, Coord. Chem. Rev. 236, 71 (2003); (f) M. P. Shaver and M. D. Fryzuk, Adv. Synth. Catal. 345, 1061 (2003); (g) M. Hidai, Coord. Chem. Rev. 185–186, 99 (1999); (h) M. Hidai and Y. Mizobe, Chem. Rev. 95, 1115 (1995).
- 4
J. C. Peters and
M. P. Mehn, in
W. B. Tolman, ed.,
Activation of Small Molecules: Organometallic and Bioinorganic Perspectives,
Wiley-VCH,
Weinheim, Germany,
2006, pp.
81–119.
10.1002/9783527609352.ch3 Google Scholar
- 5(a)
G. J. Leigh,
Nitrogen Fixation at the Millennium,
Elsevier,
Amsterdam, the Netherlands,
2002;
10.1016/B978-044450965-9/50011-2 Google Scholar(b) B. E. Smith, R. L. Richards, and W. E. Newton, Catalysts for Nitrogen Fixation: Nitrogenases, Relevant Chemical Models and Commercial Processes, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2004.10.1007/978-1-4020-3611-8 Google Scholar
- 6(a) O. Einsle, F. A. Tezcan, S. L. A. Andrade, B. Schmid, M. Yoshida, J. B. Howard, and D. C. Rees, Science 297, 1696 (2002); (b) J. Kim and D. C. Rees, Science 257, 1677 (1992).
- 7(a) M. E. Vol'pin and V. B. Shur, Dokl. Akad. Nauk. SSSR 156, 1102 (1964); (b) M. E. Vol'pin, Pure Appl. Chem. 30, 607 (1972).
- 8 A. D. Allen and C. V. Senoff, J. Chem. Soc., Chem. Commun. 621 (1965).
- 9 M. E. Vol'pin, J. Organomet. Chem. 200, 319 (1980).
- 10 M. E. Vol'pin and V. B. Shur, Nature 209, 1236 (1966).
- 11 M. E. Vol'pin, M. A. Ilatovskaya, L. V. Kosyakova, and V. B. Shur, Chem. Commun. 1074 (1968).
- 12 A. E. Shilov, N. T. Denisov, O. N. Efimov, V. F. Shuvaloc, N. I. Shuvalova, and A. K. Shilova, Nature 231, 460 (1971).
- 13 N. T. Denisov, S. I. Kobeleva, A. E. Shilov, and N. I. Shuvalova, Kinet. Catal. 21, 911 (1980).
- 14 A. E. Shilov, in J. Chatt, J. M. da Camara Pina, and R. L. Richards, eds., New Trends in the Chemistry of Nitrogen Fixation, Academic Press, London, 1980, p. 121.
- 15 L. A. Nikonova, S. A. Isaeva, N. I. Pershikova, and A. E. Shilov, J. Mol. Catal. 1, 367(1975–1976).
- 16(a) A. E. Shilov, J. Mol. Catal. 41, 221 (1987); (b) T. A. Bazhenova and A. E. Shilov, Coord. Chem. Rev. 144, 69 (1995).
- 17(a) L. P. Didenko, O. K. Gavrilina, E. E. Yablonskaya, A. K. Shilova, and A. E. Shilov, Nouv. J. Chim. 7, 605 (1983); (b) L. P. Didenko, A. B. Gavrilov, A. K. Shilova, V. V. Strelets, V. N. Tsarev, A. E. Shilov, V. D. Makhaev, A. K. Banerjee, and L. Pospishil, Nouv. J. Chim. 10, 584 (1986).
- 18(a) M. Hidai, K. Tominari, Y. Uchida, and A. Misono, J. Chem. Soc., Chem. Commun. 1392 (1969); (b) M. Hidai, K. Tominari, and Y. Uchida, J. Am. Chem. Soc. 94, 110 (1972).
- 19 J. Chatt, A. J. Pearman, and R. L. Richards, J. Chem. Soc., Dalton Trans. 2074 (1974).
- 20 W. Hussain, G. J. Leigh, H. Mohd.-Ali, C. J. Pickett, and D. A. Rankin, J. Chem. Soc., Dalton Trans. 1703 (1984).
- 21 T. A. George and C. D. Seibold, Inorg. Chem. 12, 2544 (1973).
- 22(a) J. Chatt, A. J. Pearman, and R. L. Richards, Nature, 253, 30 (1975); (b) J. Chem. Soc., Dalton Trans. 1852 (1977).
- 23 T. Takahashi, Y. Mizobe, M. Sato, Y. Uchida, and M. Hidai, J. Am. Chem. Soc. 102, 7461 (1980).
- 24 J. Chatt, A. J. Pearman, and R. L. Richards, J. Chem. Soc., Dalton Trans. 1766 (1978).
- 25 S. N. Anderson, M. E. Fakley, R. L. Richards, and J. Chatt, J. Chem. Soc., Dalton Trans. 1973 (1981).
- 26(a) G. A. Heath, R. Mason, and K. M. Thomas, J. Am. Chem. Soc. 96, 259 (1974); (b) M. Hidai, T. Kodama, M. Sato, M. Harakawa, and Y. Uchida, Inorg. Chem. 15, 2694 (1976); (c) H. Nishihara, T. Mori, Y. Tsurita, K. Nakano, T. Saito, and Y. Sasaki, J. Am. Chem. Soc. 104, 4367 (1982).
- 27(a) J. Chatt, M. E. Fakley, P. B. Hitchcock, R. L. Richards, and N. T. Luong-Thi, J. Chem. Soc., Dalton Trans. 345 (1982); (b) A. Galindo, A. Hills, D. L. Hughes, R. L. Richards, M. Hughes, and J. Mason, J.Chem. Soc., Dalton Trans. 283 (1990); (c) J. E. Barclay, A. Hills, D. L. Hughes, G. J. Leigh, C. J. Macdonald, M. Abu Bakar, and H. Mohd.-Ali, J. Chem. Soc., Dalton Trans. 2503 (1990).
- 28(a) C. J. Pickett and J. Talarmin, Nature 317, 652 (1985); (b) C. J. Pickett, K. S. Ryder, and J. Talarmin, J. Chem. Soc., Dalton Trans. 1453 (1986).
- 29(a) M. Hidai, K. Komori, T. Kodama, D. Jin, T. Takahashi, S. Sugiura, Y. Uchida, and Y. Mizobe, J. Organomet. Chem. 272, 155 (1984); (b) K. Komori, S. Sugiura, Y. Mizobe, M. Yamada, and M. Hidai, Bull. Chem. Soc. Jpn. 62, 2953 (1989); (c) A. C. Street, Y. Mizobe, F. Gotoh, I. Mega, H. Oshita, and M. Hidai, Chem. Lett. 383 (1991).
- 30 K. Komori, H. Oshita, Y. Mizobe, and M. Hidai, J. Am. Chem. Soc. 111, 1939 (1989).
- 31 D. V. Yandulov and R. R. Schrock, Science 301, 76 (2003).
- 32 R. R. Schrock, Angew. Chem., Int. Ed. 47, 5512 (2008).
- 33(a) G. J. Leigh and M. Jimenez-Tenorio, J. Am. Chem. Soc. 113, 5862 (1991); (b) A. Hills, D. L. Hughes, M. Jimenez-Tenorio, G. J. Leigh, and A. T. Rowley, J. Chem. Soc., Dalton Trans. 3041 (1993); (c) D. A. Hall and G. J. Leigh, J. Chem. Soc., Dalton Trans. 3539 (1996).
- 34 J. L. Crossland, D. M. Young, L. N. Zakharov, and D. R. Tyler, Dalton Trans. 9253 (2009).
- 35 Y. Mizobe, Y. Yokobayashi, H. Oshita, T. Takahashi, and M. Hidai, Organometallics 13, 3764 (1994).
- 36 R. Ferguson, E. Solavi, C. Floriani, D. Osella, M. Ravera, N. Re, A. Chiesi-Villa, and C. Rizzoli, J. Am. Chem. Soc. 119, 10104 (1997).
- 37 H. Shan, Y. Yang, A. J. James, and P. R. Sharp, Science 275, 1460 (1997).
- 38 I. Vidyaratne, P. Crewdson, E. Lefebvre, and S. Gambarotta , Inorg. Chem. 46, 8836 (2007).
- 39 M. D. Fryzuk, T. S. Haddad, M. Mylvaganam, D. H. McConville, and S. J. Rettig, J. Am. Chem. Soc. 115, 2782 (1993).
- 40 K. Jonas and C. Krüger, Angew. Chem., Int. Ed. Engl. 19, 520 (1980).
- 41 G. P. Pez, P. Apgar, and R. K. Krissey, J. Am. Chem. Soc. 104, 482 (1982).
- 42 M. D. Fryzuk, S. A. Johnson, and S. J. Rettig, J. Am. Chem. Soc. 120, 11024 (1998).
- 43(a) M. D. Fryzuk, J. B. Love, S. J. Rettig, and V. G. Young, Science 275, 1445 (1997); (b) H. Basch, D. J. Musaev, K. Morokuma, M. D. Fryzuk, J. B. Love, W. W. Seidel, A. Albinati, T. F. Koetzle, W. T. Klooster, A. S. Mason, and J. Eckert, J. Am. Chem. Soc. 121, 523 (1999).
- 44 L. Morello, M. J. Ferreira, B. O. Patrick, and M. D. Fryzuk, Inorg. Chem. 47, 1319 (2008).
- 45 J. A. Pool, E. Lobkovsky, and P. J. Chirik, Nature 427, 527 (2004).
- 46(a) P. J. Chirik, Dalton Trans., 16 (2007); (b) H. Miyachi, Y. Shigeta, and K. Hirao, J. Phys. Chem. 109, 8800 (2005).
- 47(a) Y. Nishibayashi, S. Iwai, and M. Hidai, Science 279, 540 (1998); (b) Y. Nishibayashi, S. Takemoto, S. Iwai, and M. Hidai, Inorg. Chem. 39, 5946 (2000).
- 48
M. Hidai and
Y. Nishibayashi, in
M. Peruzzini and
R. Poli, eds.
Recent Advances in Hydride Chemistry,
Elsevier,
Amsterdam, the Netherlands,
2001, pp.
117–138.
10.1016/B978-044450733-4/50005-X Google Scholar