Acylation – Homogeneous
Timothy P. Smyth
University of Limerick, County Limerick, Ireland
Search for more papers by this authorTimothy P. Smyth
University of Limerick, County Limerick, Ireland
Search for more papers by this authorAbstract
The main thrust of this article is to draw together the salient features relevant to understanding the nature of catalysis in acyl-group transfer. In doing so, an attempt is made to identify common elements of catalysis across diverse acylation processes involving both Lewis and Brønsted acids. Acyl-group transfer to carbon-based substrates is the most synthetically useful implementation of this reaction and, as such substrates are frequently moderate nucleophiles, catalysis is most required in acylation of these materials. Procedures and processes aimed at cleaner, more atom-efficient Friedel–Crafts acylation chemistry are also covered, as are other acylation reactions: these include use of organometallic species and catalysis of acyl-group transfer to heteroatoms such as O and N in instances where chemo- and enantioselective control is important.
Bibliography
- 1 C. Friedel and J. M. Crafts, Compt. Rend. 84, 1392–1395 and 1450–1454 (1877). For a historical perspective on the development of the Friedel–Crafts reaction see Ref. (4), Chapt. 1.
- 2 P. H. Gore, Chem. Rev. 55, 229–281 (1955).
- 3 G. A. Olah, ed., Friedel Crafts and Related Reactions, Wiley-Interscience, New York, Vols. I–IV, 1963–1965; Vol. III (1964) in particular deals with acylation and related reactions.
- 4 G. A. Olah, Friedel Crafts Chemistry, John Wiley & Sons, Inc., New York, 1973. This is a single-volume version of Ref. (3).
- 5 D. P. N. Satchell, Quart. Rev. 17, 160–203 (1963).
- 6 D. P. N. Satchell and R. S. Satchell, in S. Patai, ed., The Chemistry of the Carbonyl Group, Interscience Publishers, London, 1966, Chapt. 5.
- 7 B. M. Trost and I. Fleming, eds., Comprehensive Organic Synthesis, Vol. 2, Pergamon, Oxford, 1991.
- 8 F. R. Jensen and G. Goldman, in Ref. (3), Vol. III, Chapt. 36.
- 9 N. N. Lebedev, J. Gen. Chem. U.S.S.R. 21, 1975–1981 (1951).
- 10 R. Ashforth and J.-R. Desmurs, in J.-R. Desmurs and S. Raton, eds., The Roots of Organic Development, Elsevier, Amsterdam, 1996, Chapt. 1.
- 11 S. Pivsa-Art and co-workers, J. Chem. Soc., Perkin Trans. 1 13, 1703–1707 (1994).
- 12 N. I. Sax, Dangerous Properties of Industrial Materials, 6th ed., Van Nostrand Reinhold Co., New York, 1984.
- 13 A. Ogawa and D. P. Curran, J. Org. Chem. 62, 450–451 (1997).
- 14
J. Nishikido and co-workers,
Synlett
12,
1347–1348
(1998).
10.1055/s-1998-1990 Google Scholar
- 15 J. K. Groves, Chem. Soc. Rev. 1, 73–97 (1972).
- 16 S. E. Eyley, in Ref. (7), Chapt. 3.1.
- 17 C. D. Nenitzescu and A. T. Balaban, in Ref. (3), Vol. III, Chapt. 37.
- 18 K. E. Harding and co-workers, J. Org. Chem. 49, 2049–2050 (1984).
- 19 J.-E. Dubois, I. Saumtaly, and C. Lion, Bull. Soc. Chim. Fr. 3–4, 133–138 (1984).
- 20 H. M. R. Hoffmann and T. Tsushima, J. Am. Chem. Soc. 99, 6008–6011 (1977).
- 21 I. Fleming, J. Dunoguès, and R. H. Smithers, in A. S. Kende, ed., Organic Reactions, Vol. 37, John Wiley & Sons, Inc., New York, 1989, Chapt. 2.
- 22 C. Morel-Fourier, J.-P. Dulcère, and M. Santelli, J. Am. Chem. Soc. 113, 8062–8069 (1991).
- 23 M. Vol'pin, I. Akhrem, and A. Orlinkov, New. J. Chem. 13, 771–790 (1989).
- 24 O. C. Dermer and R. A. Billmeier, J. Am. Chem. Soc. 64, 464–465 (1942).
- 25 For a detailed analysis see P. H. Gore, in Ref. (3), Vol. III, Chapt. 31.
- 26 For information on quantitative aspects of Lewis acidity see D. P. N. Satchell and R. S. Satchell, Chem. Rev. 69, 251–278 (1969).
- 27 D. P. N. Satchell and R. S. Satchell, in S. Patai, ed., The Chemistry of Acid Halides, Interscience Publishers, London, 1972, Chapt. 4.
- 28 P. Laszlo and M. Teston, J. Am. Chem. Soc. 112, 8750–8754 (1990). See also Ref. (44).
- 29 Ref. (4), Chapt. 4. See also Ref. (34).
- 30 G. Baddeley and D. Voss, J. Chem. Soc. 418–422 (1954).
- 31 For a cogent overview on ir, nmr, and x-ray data see B. Chevrier and R. Weiss, Angew. Chem., Int. Ed. Engl. 13, 1–94 (1974).
- 32 D. Cook, in Ref. (3), Vol. I, Chapt. 9.
- 33 T. Xu and co-workers, J. Am. Chem. Soc. 119, 396–405 (1997).
- 34 G. A. Olah and co-workers, J. Am. Chem. Soc. 85, 1328–1334 (1963).
- 35 R. Corriu, M. Dore, and R. Thomassin, Tetrahedron 27, 5601–5618 and 5819–5831 (1971).
- 36 B. Chevrier, J.-M. Le Carpentier, and R. Weiss, J. Am. Chem. Soc. 94, 5718–5723 (1972).
- 37 B. Glavincevski and S. Brownstein, J. Org. Chem. 47, 1005–1007 (1982).
- 38 B. P. Susz and D. Cassimatis, Helv. Chim. Acta. 48, 395–403 (1961).
- 39 Ref. (4), Chapt. IV, pp. 311–312.
- 40 J. Gao, W. L. Chou, and A. Auerbach, Biophys. J. 65, 43–47 (1993) and references therein.
- 41 P. Tarakeshwar, J. Y. Lee, and K. S. Kim, J. Phys. Chem. A 102, 2253–2255 (1998).
- 42 G. A. Olah and co-workers, J. Am. Chem. Soc. 86, 2198–2202 (1964).
- 43 G. A. Olah and co-workers, J. Am. Chem. Soc. 86, 2203–2209 (1964).
- 44 M. Santelli and J.-M. Pons, Lewis Acids and Selectivity in Organic Synthesis, CRC Press, Boca Raton, 1996.
- 45
For a quantitative rating of electrophilicity and of nucleophilicity see
H. Mayr and co-workers,
J. Phys. Org. Chem.
11,
642–654
(1998)
and references therein.
10.1002/(SICI)1099-1395(199808/09)11:8/9<642::AID-POC65>3.0.CO;2-2 CAS Web of Science® Google Scholar
- 46 J. Ren, C. J. Cramer, and R. R. Squires, J. Am. Chem. Soc. 121, 2633–2634 (1999).
- 47 G. Marino, in A. R. Katritzky and A. J. Boulton, eds., Advances in Heterocyclic Chemistry, Vol. 13 Academic Press, New York, 1971, pp. 256–259 and references therein.
- 48 F. M. Menger, Acc. Chem. Res. 18, 128–134 (1985); Acc. Chem. Res. 26, 206–212 (1993).
- 49 H. Heaney, in Ref. (7), Chapt. 3.2.
- 50 Y.-H. So and J. P. Heeschen, J. Org. Chem. 62, 3552–3561 (1997).
- 51 J. M. Tedder, Chem. Rev. 787–827 (1955).
- 52 F. Effengerger, J. K. Eberhard, and A. H. Maier, J. Am. Chem. Soc. 118, 12572–12579 (1996).
- 53 Y. Sato and co-workers, J. Am. Chem. Soc. 117, 3037–3043 (1995).
- 54 N. Hartz, G. Rasul, and G. A. Olah, J. Am. Chem. Soc. 115, 1277–1285 (1993) and references therein.
- 55 G. A. Olah and A. M. White, J. Am. Chem. Soc. 89, 7072–7075 (1967); G. K. S. Prakash and co-workers, J. Phys. Chem. 100, 15805–15809 (1996).
- 56 L. F. Fieser and E. B. Hershberg, J. Am. Chem. Soc. 61, 1272–1281 (1939).
- 57Eur. Pat. 0,284,310 (Sept. 11, 1991), N. Elango and co-workers (to Hoechst Celanese).
- 58 G. A. Olah, G. K. S. Prakash, and J. Sommer, Superacids, Wiley-Interscience, New York, 1985.
- 59 F. Effenberger and G. Epple, Angew. Chem. Int., Ed. Engl. 11, 299–301 (1972).
- 60 Aldrichimica Acta 19(3), 76 (1986).
- 61 G. A. Olah and co-workers, Synthesis 672–673 (1978).
- 62 T. Yamato and co-workers, J. Org. Chem. 56, 3955–3957 (1991).
- 63 T. P. Smyth and B. W. Corby, Org. Process Res. Dev. 1, 264–267 (1997).
- 64 T. P. Smyth and B. W. Corby, J. Org. Chem. 63, 8946–8951 (1998).
- 65 C. Galli, Synthesis 303–304 (1979).
- 66 S. Kobayashi, Eur. J. Org. Chem. 1, 15–27 (1999) and references therein.
- 67 J. Kendall, E. D. Crittenden, and H. K. Miller, J. Am. Chem. Soc. 45, 963–996 (1923).
- 68
R. Scholl,
K. Meyer, and
J. Donat,
Ber.
70,
2180–2189
(1937).
10.1002/cber.19370701104 Google Scholar
- 69 J. A. Boon and co-workers, J. Org. Chem. 51, 480–483 (1986); C. J. Adams and co-workers, J. Chem. Soc., Chem. Commun. 2097–2098 (1998).
- 70Int. Pat. Appl. WO 99/19288 (Apr. 22, 1999), P. N. Davey and co-workers (to Quest International).
- 71 A. Stark, B. L. MacLean, and R. D. Singer, J. Chem. Soc., Dalton Trans. 63–66 (1999).
- 72 C. Cui, X. Wang, and R. Weiss, J. Org. Chem. 61, 1962–1974 (1996) and references therein.
- 73 A. Couture and co-workers, J. Chem. Soc., Perkin Trans. 1 7, 789–794 (1999).
- 74 G. A. Kraus and M. Kirihara, J. Org. Chem. 57, 3256–3257 (1992).
- 75 P. A. Evans, J. D. Nelson, and A. L. Stanley, J. Org. Chem. 60, 2298–2301 (1995).
- 76 S. Akai, A. J. Peat, and S. L. Buchwald, J. Am. Chem. Soc. 120, 9119–9125 (1998).
- 77 K. Ishihara, M. Kubota, and H. Yamamoto, Synlett 265–266 (1996).
- 78 P. A. Procopiou and co-workers, J. Org. Chem. 63, 2342–2347 (1998).
- 79 G. Höfle, W. Steiglich, and H. Vorbrüggen, Angew. Chem., Int. Ed. Engl. 17, 569–583 (1978).
- 80 H. Zhao, A. Pendri, and R. B. Greenwald, J. Org. Chem. 63, 7559–7562 (1998).
- 81 E. Vedejs and co-workers, J. Org. Chem. 58, 7286–7288 (1993).
- 82 D. Tashiro and co-workers, J. Org. Chem. 62, 8141–8144 (1997).
- 83 P. Ilkankumaran and J. G. Verkade, J. Org. Chem. 64, 3086–3089 (1999).
- 84 J. C. Ruble, J. Tweddell, and G. C. Fu, J. Org. Chem. 63, 2794–2795 (1998) and references therein.
- 85
T. Sano and co-workers,
Chem. Lett.
3,
265–266
(1999).
10.1246/cl.1999.265 Google Scholar
- 86 E. Vedejs, O. Daugulis, and S. T. Diver, J. Org. Chem. 61, 430–431 (1996).
- 87 S. J. Miller and co-workers, J. Am. Chem. Soc. 120, 1629–1630 (1998).
- 88 T. Kawabata and co-workers, J. Am. Chem. Soc. 119, 3169–3170 (1997).
- 89 A. Orita and co-workers, Tetrahedron 55, 2899–2910 (1999).
- 90 S. Roelens, J. Org. Chem. 61, 5257–5263 (1996) and references therein.
- 91 A. Morcuende and co-workers, J. Org. Chem. 61, 5264–5270 (1996).
- 92
S. Petersen and
U. Lüning,
Eur. J. Org. Chem.
4,
847–854
(1999).
10.1002/(SICI)1099-0690(199904)1999:4<847::AID-EJOC847>3.0.CO;2-3 Google Scholar