Is Type 2 Diabetes the Result of a “Thrifty Genotype” or a “Thrifty Phenotype”?
Robert S. Lindsay
MedStar Research Institute, Washington, DC, USA
Search for more papers by this authorRobert S. Lindsay
MedStar Research Institute, Washington, DC, USA
Search for more papers by this authorAbstract
While a number of important risk factors for development of type 2 diabetes have been described—most notably overweight and obesity—much of the detail of the etiology of the disease remains unknown. Both genetic and environmental factors will be important and disease risk is likely to reflect a complex interaction of both. Certain aspects of the epidemiology of type 2 diabetes, the widespread predisposition to the disease, increased predisposition in certain ethnic groups, and more recently, well-described associations of diabetes risk and lower birth weight have prompted a number of hypotheses. These hypotheses attempt to explain these important epidemiological features of type 2 diabetes but also place our understanding of the etiology of type 2 diabetes in a wider context. A unifying theme of the thrifty genotype and thrifty phenotype hypotheses is the concept that predisposition to type 2 diabetes may reflect previous nutritional conditions. In the case of the thrifty genotype the nutritional history of populations favors genetic polymorphisms, which also render individuals diabetes prone. By contrast the thrifty phenotype proposes that adverse nutritional conditions in the early environment predispose to later disease in individuals. Both hypotheses are connected by a further underlying aim—to aid our understanding of the causes of type 2 diabetes and thus find ways to prevent, treat, and ultimately cure the disease.
References
- 1 Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 1997; 14 (suppl 5): S1–85.
- 2 Neel JV. Diabetes mellitus: a thrifty genotype rendered detrimental by “progress”. Am J Hum Genet 1962; 14: 353–62.
- 3 Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595–601.
- 4 Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 1999; 353: 1789–92.
- 5 Freinkel N. Banting Lecture 1980. Of pregnancy and progeny. Diabetes 1980; 29: 1023–35.
- 6 Neel JV. The “thrifty genotype” in 1998. Nutr Rev 1999; 57: S2–S9.
- 7 Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763–70.
- 8 Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF Jr. Liver and kidney metabolism during prolonged starvation. J Clin Invest 1969; 48: 574–83.
- 9 Reaven GM. Hypothesis: muscle insulin resistance is the (“not-so”) thrifty genotype. Diabetologia 1998; 41: 482–4.
- 10 Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett PH, Bogardus C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 1993; 329: 1988–92.
- 11 Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system?Diabetologia 1998; 41: 1241–8.
- 12 Fernandez-Real JM, Ricart W. Insulin resistance and inflammation in an evolutionary perspective: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 1999; 42: 1367–74.
- 13 Festa A, D'Agostino RB, Tracy RP, Haffner SM. Elevated levels of acute phase proteins and plasminogen activator inhibitor-1 (PAI-1) predict the development of type 2 diabetes mellitus: the Inslin Resistance Atherosclerosis Study (IRAS). Diabetes 2002; 51: 1131–7.
- 14 Lindsay RS, Krakoff J, Hanson RL, Bennett PH, Knowler WC. Gamma globulin levels predict type 2 diabetes in the Pima Indian population. Diabetes 2001; 50: 1598–603.
- 15 Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–34.
- 16 Ford ES. Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national sample of US adults. Am J Epidemiol 2002; 155: 57–64.
- 17 Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002; 51: 455–61.
- 18 Fernandez-Real JM, Broch M, Vendrell J, Gutierrez C, Casamitjana R, Pugeat M, Richart C, Ricart W. Interleukin-6 gene polymorphism and insulin sensitivity. Diabetes 2000; 49: 517–20.
- 19 Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 1990; 6: 1–27.
- 20 Cordain L, Miller J, Mann N. Scant evidence of periodic starvation among hunter-gatherers. Diabetologia 1999; 42: 383–4.
- 21 McNeill W. Plagues and Peoples. Garden City, NY: Doubleday, 1976.
- 22 Dobyns H. Their Numbers Became Thinned. Knoxville: University of Tennessee Press, 1983.
- 23 Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–8.
- 24 Coleman DL. Obesity genes: beneficial effects in heterozygous mice. Science 1979; 203: 663–5.
- 25 Li WD, Reed DR, Lee JH, Xu W, Kilker RL, Sodam BR, Price RA. Sequence variants in the 5′ flanking region of the leptin gene are associated with obesity in women. Ann Hum Genet 1999; 63: 227–34.
- 26 Hager J, Clement K, Francke S, Dina C, Raison J, Lahlou N, Rich N, Pelloux V, Basdevant A, Guy-Grand B, North M, Froguel P. A polymorphism in the 5′ untranslated region of the human ob gene is associated with low leptin levels. Int J Obes Relat Metab Disord 1998; 22: 200–5.
- 27 Mammes O, Betoulle D, Aubert R, Herbeth B, Siest G, Fumeron F. Association of the G-2548A polymorphism in the 5′ region of the LEP gene with overweight. Ann. Hum Genet 2000; 64: 391–4.
- 28 Mammes O, Betoulle D, Aubert R, Giraud V, Tuzet S, Petiet A, Colas-Linhart N, Fumeron F. Novel polymorphisms in the 5′ region of the LEP gene: association with leptin levels and response to low-calorie diet in human obesity. Diabetes 1998; 47: 487–9.
- 29 Heo M, Leibel RL, Boyer BB, Chung WK, Koulu M, Karvonen MK, Pesonen U, Rissanen A, Laakso M, Uusitupa MI, Chagnon Y, Bouchard C, Donohoue PA, Burns TL, Shuldiner AR, Silver K, Anderson RE, Pedersen O, Echwald S, Sorensen TI, Behn P, Permutt MA, Jacobs KB, Elston RC, Hoffman DJ, Allison DB. Pooling analysis of genetic data: the association of leptin receptor (LEPR) polymorphisms with variables related to human adiposity. Genetics 2001; 159: 1163–78.
- 30 Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19: 155–7.
- 31 Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G, Cheetham T, O'Rahilly S. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000; 106: 271–9.
- 32 Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 2000; 106: 253–62.
- 33 Norman RA, Permana P, Tanizawa Y, Ravussin E. Absence of genetic variation in some obesity candidate genes (GLP1R, ASIP, MC4R, MC5R) among Pima indians. Int J Obes Relat Metab Disord 1999; 23: 163–5.
- 34 Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, Boyce V, Howard BV, Bogardus C. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988; 318: 467–72.
- 35 Groop L, Orho-Melander M. The dysmetabolic syndrome. J Intern Med 2001; 250: 105–20.
- 36 Barker DJ. Fetal and Infant Origins of Adult Disease. London: British Medical Journal, 1992.
- 37 Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989; 298: 564–7.
- 38 Osmond C, Barker DJ, Winter PD, Fall CH, Simmonds SJ. Early growth and death from cardiovascular disease in women. BMJ 1993; 307: 1519–24.
- 39 Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303: 1019–22.
- 40 Phipps K, Barker DJ, Hales CN, Fall CH, Osmond C, Clark PM. Fetal growth and impaired glucose tolerance in men and women. Diabetologia 1993; 36: 225–8.
- 41 Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993; 36: 62–7.
- 42 Phipps K, Barker DJ, Hales CN, Fall CH, Osmond C, Clark PM. Fetal growth and impaired glucose tolerance in men and women. Diabetologia 1993; 36: 225–8.
- 43 Robinson S, Walton RJ, Clark PM, Barker DJ, Hales CN, Osmond C. The relation of fetal growth to plasma glucose in young men. Diabetologia 1992; 35: 444–6.
- 44 Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stern MP. Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia 1994; 37: 624–31.
- 45 McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 1994; 308: 942–5.
- 46 Lithell HO, McKeigue PM, Berglund L, Mohsen R, Lithell UB, Leon DA. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ 1996; 312: 406–10.
- 47 Yajnik CS, Fall CH, Vaidya U, Pandit AN, Bavdekar A, Bhat DS, Osmond C, Hales CN, Barker DJ. Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabet Med 1995; 12: 330–6.
- 48 Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation 1996; 94: 3246–50.
- 49 Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH, Speizer FE, Manson JE. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med 1999; 130: 278–84.
- 50 Kramer MS, Joseph KS. Enigma of fetal/infant-origins hypothesis. Lancet 1996; 348: 1254–5.
- 51 Poulsen P, Vaag AA, Kyvik KO, Moller JD, Beck-Nielsen H. Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 1997; 40: 439–46.
- 52 Cahill GF Jr. Beta-cell deficiency, insulin resistance, or both? N. Engl. J Med 1988; 318: 1268–70.
- 53 Skarfors ET, Selinus KI, Lithell HO. Risk factors for developing non-insulin dependent diabetes: a 10 year follow up of men in Uppsala. BMJ 1991; 303: 755–60.
- 54 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15: 318–68.
- 55 Hanson RL, Pratley RE, Bogardus C, Narayan KM, Roumain JM, Imperatore G, Fagot-Campagna A, Pettitt DJ, Bennett PH, Knowler WC. Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am J Epidemiol 2000; 151: 190–8.
- 56 Phillips DI, Barker DJ, Hales CN, Hirst S, Osmond C. Thinness at birth and insulin resistance in adult life. Diabetologia 1994; 37: 150–4.
- 57 Dabelea D, Pettitt DJ, Hanson RL, Imperatore G, Bennett PH, Knowler WC. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults. Diabetes Care 1999; 22: 944–50.
- 58 Clausen JO, Borch-Johnsen K, Pedersen O. Relation between birth weight and the insulin sensitivity index in a population sample of 331 young, healthy Caucasians. Am J Epidemiol 1997; 146: 23–31.
- 59 Flanagan DE, Moore VM, Godsland IF, Cockington RA, Robinson JS, Phillips DI. Fetal growth and the physiological control of glucose tolerance in adults: a minimal model analysis. Am J Physiol Endocrinol Metab 2000; 278: E700–E706.
- 60 Hofman PL, Cutfield WS, Robinson EM, Bergman RN, Menon RK, Sperling MA, Gluckman PD. Insulin resistance in short children with intrauterine growth retardation. J Clin Endocrinol Metab 1997; 82: 402–6.
- 61 McKeigue PM, Lithell HO, Leon DA. Glucose tolerance and resistance to insulin-stimulated glucose uptake in men aged 70 years in relation to size at birth. Diabetologia 1998; 41: 1133–8.
- 62 Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev 1998; 19: 477–90.
- 63 Pratley RE, Weyer C. The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus. Diabetologia 2001; 44: 929–45.
- 64 Van Assche FA, De Prins F, Aerts L, Verjans M. The endocrine pancreas in small-for-dates infants. Br J Obstet Gynaecol 1977; 84: 751–3.
- 65 Cook JT, Levy JC, Page RC, Shaw JA, Hattersley AT, Turner RC. Association of low birth weight with beta cell function in the adult first degree relatives of non-insulin dependent diabetic subjects. BMJ 1993; 306: 302–6.
- 66 Crowther NJ, Trusler J, Cameron N, Toman M, Gray IP. Relation between weight gain and beta-cell secretory activity and non-esterified fatty acid production in 7-year-old African children: results from the Birth to Ten study. Diabetologia 2000; 43: 978–85.
- 67 Alvarsson M, Efendic S, Grill VE. Insulin responses to glucose in healthy males are associated with adult height but not with birth weight. J Intern Med 1994; 236: 275–9.
- 68
Wills J,
Watson JM,
Hales CN,
Phillips DI.
The relation of fetal growth to insulin secretion in young men.
Diabet Med 1996; 13: 773–4.
10.1002/(SICI)1096-9136(199608)13:8<773::AID-DIA175>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 69 Pettitt DJ, Knowler WC, Bennett PH, Aleck KA, Baird HR. Obesity in offspring of diabetic Pima Indian women despite normal birth weight. Diabetes Care 1987; 10: 76–80.
- 70 Lever AF, Harrap SB. Essential hypertension: a disorder of growth with origins in childhood? J Hypertens 1992; 10: 101–20.
- 71 Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease-the hypothesis revisited. BMJ 1999; 319: 245–9.
- 72 Forsen T, Eriksson J, Tuomilheto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133: 176–82.
- 73 Lindsay RS, Cook V, Hanson RL, Salbe AD, Tataranni A, Knowler WC. Early excess weight gain of children in the Pima Indian population. Pediatrics 2002; 109: E33.
- 74 Kline J, Stein ZA, Susser M. Conception to Birth: Epidemiology of Prenatal Development. New York: Oxford University Press, 1989.
- 75 Walton A, Hammond J. The maternal effects on growth and conformation in Shire-Shetland Crosses. Proc R Soc Ser B 1938; 125: 311–35.
- 76 Ratcliffe SG. The effect of chromosome abnormalities on growth. Br Med Bull 1981; 37: 291–5.
- 77 Seeds JW. Impaired fetal growth: definition and clinical diagnosis. Obstet Gynecol 1984; 64: 303–10.
- 78 Ounsted M, Moar VA, Scott A. Risk factors associated with small-for-dates and large-for-dates infants. Br J Obstet Gynaecol 1985; 92: 226–32.
- 79 Wang X, Zuckerman B, Coffman GA, Corwin MJ. Familial aggregation of low birth weight among whites and blacks in the United States. N Engl J Med 1995; 333: 1744–9.
- 80 Morton NE. The inheritance of human birth weight. Ann Hum Genet 1955; 20: 125–34.
- 81 Robson EB. Birth weight in cousins. Ann Hum Genet 1955; 19: 262–8.
- 82 Magnus P, Berg K, Bjerkedal T, Nance WE. Parental determinants of birth weight. Clin Genet 1984; 26: 397–405.
- 83 Magnus P. Further evidence for a significant effect of fetal genes on variation in birth weight. Clin Genet 1984; 26: 289–96.
- 84 Langhoff-Roos J, Lindmark G, Gustavson KH, Gebre-Medhin M, Meirik O. Relative effect of parental birth weight on infant birth weight at term. Clin Genet 1987; 32: 240–8.
- 85 Carr-Hill R, Campbell DM, Hall MH, Meredith A. Is birth weight determined genetically? Br Med J 1987; 295: 687–9.
- 86 Brooks AA, Johnson MR, Steer PJ, Pawson ME, Abdalla HI. Birth weight: nature or nurture? Early Hum Dev 1995; 42: 29–35.
- 87 Villar J, Belizan JM. The relative contribution of prematurity and fetal growth retardation to low birth weight in developing and developed societies. Am J Obstet Gynecol 1982; 143: 793–8.
- 88 Breschi MC, Seghieri G, Bartolomei G, Gironi A, Baldi S, Ferrannini E. Relation of birthweight to maternal plasma glucose and insulin concentrations during normal pregnancy. Diabetologia 1993; 36: 1315–21.
- 89 Christensen K, Vaupel JW, Holm NV, Yashin AI. Mortality among twins after age 6: fetal origins hypothesis versus twin method. BMJ 1995; 310: 432–6.
- 90 Lucas A. Programming by early nutrition in man. In G Bock, J Whelan (eds). The Childhood Environment and Adult Disease, Chichester, UK: Wiley, 1991; pp 38–55.
- 91 White PW. Childhood diabetes: its course and influence in the second and third generations. Diabetes 1960; 9: 345–55.
- 92 Pedersen J. Weight and length at birth in infants of diabetic mothers. Acta Endocrinol 1954; 16: 330–42.
- 93 Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 1983; 308: 242–5.
- 94 Pettitt DJ, Aleck KA, Baird HR, Carraher MJ, Bennett PH, Knowler WC. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 1988; 37: 622–8.
- 95 Brook CG. Evidence for a sensitive period in adipose-cell replication in man. Lancet 1972; 2: 624–7.
- 96 Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976; 295: 349–53.
- 97 Gorski RA, Barraclough CA. Effects of low dosages of androgens on the differentiation of hypothalamic regulatory control of ovulation in the rat. Endocrinology 1963; 73: 210–6.
- 98 Harris G. Sex hormones, brain development and brain function. Endocrinology 1964; 75: 627–48.
- 99 Pettitt DJ, Forman MR, Hanson RL, Knowler WC, Bennett PH. Breastfeeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians. Lancet 1997; 350: 166–8.
- 100 von Kries R, Koletzko B, Sauerwald T, von Mutius E, Barnert D, Grunert V, von Voss H. Breast feeding and obesity: cross sectional study. BMJ 1999; 319: 147–50.
- 101 Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 1993; 341: 339–41.
- 102 Edwards CR, Benediktsson R, Lindsay RS, Seckl JR. Dysfunction of placental glucocorticoid barrier: link between fetal environment and adult hypertension?Lancet 1993; 341: 355–7.
- 103 Lindsay RS, Lindsay RM, Waddell BJ, Seckl JR. Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia 1996; 39: 1299–305.
- 104
Barker DJ.
The malnourished baby and infant.
Br Med Bull 2002; 60: 69–88.
10.1093/bmb/60.1.69 Google Scholar
- 105 Widdowson E, McCance R. The effect of finite periods of undernutrition at different ages on the composition and subsequent development of the rat. Proc R Soc Ser B 1963; 158: 329–42.
- 106 Girard JR, Ferre P, Gilbert M, Kervran A, Assan R, Marliss EB. Fetal metabolic response to maternal fasting in the rat. Am J Physiol 1977; 232: E456–63.
- 107 Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes 1991; 40 (suppl 2): 115–20.
- 108 Eriksson UJ, Swenne I. Diabetes in pregnancy: fetal macrosomia, hyperinsulinism, and islet hyperplasia in the offspring of rats subjected to temporary protein-energy malnutrition early in life. Pediatr Res 1993; 34: 791–5.
- 109 Swenne I, Crace CJ, Milner RD. Persistent impairment of insulin secretory response to glucose in adult rats after limited period of protein-calorie malnutrition early in life. Diabetes 1987; 36: 454–8.
- 110 Holness MJ, Sugden MC. Suboptimal protein nutrition in early life later influences insulin action in pregnant rats. Diabetologia 1996; 39: 12–21.
- 111
Hugh-Jones P.
Diabetes in Jamaica.
Lancet 1955; ii: 891–7.
10.1016/S0140-6736(55)92530-7 Google Scholar
- 112 Rao RH. The role of undernutrition in the pathogenesis of diabetes mellitus. Diabetes Care 1984; 7: 595–601.
- 113 Cook GC. Glucose tolerance after kwashiorkor. Nature 1967; 215: 1295–6.
- 114 Cohen MP, Stern E, Rusecki Y, Zeidler A. High prevalence of diabetes in young adult Ethiopian immigrants to Israel. Diabetes 1988; 37: 824–8.
- 115 Swai AB, Kitange HM, Masuki G, Kilima PM, Alberti KG, McLarty DG. Is diabetes mellitus related to undernutrition in rural Tanzania?BMJ 1992; 305: 1057–62.
- 116 Rao RH. Is tropical pancreatic diabetes malnutrition related?Diabetes Care 1993; 16: 941–5.
- 117
Godfrey KM,
Robinson S,
Hales CN,
Barker DJ,
Osmond C,
Taylor KP.
Nutrition in pregnancy and the concentrations of proinsulin, 32–33 split proinsulin, insulin, and C-peptide in cord plasma.
Diabet Med 1996; 13: 868–73.
10.1002/(SICI)1096-9136(199610)13:10<868::AID-DIA261>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 118 Stanner SA, Bulmer K, Andres C, Lantseva OE, Borodina V, Poteen VV, Yudkin JS. Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ 1997; 315: 1342–8.
- 119 Fajans SS, Floyd JC, Tattersall RB, Williamson JR, Pek S, Taylor CI. The various faces of diabetes in the young: changing concepts. Arch Intern Med 1976; 136: 194–202.
- 120
Hattersley AT.
Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity.
Diabet Med 1998; 15: 15–24.
10.1002/(SICI)1096-9136(199801)15:1<15::AID-DIA562>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 121 Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 1998; 19: 268–70.
- 122 Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994; 372: 182–6.
- 123 Rasmussen SK, Urhammer SA, Hansen T, Almind K, Moller AM, Borch-Johnsen K, Pedersen O. Variability of the insulin receptor substrate-1, hepatocyte nuclear factor-1alpha (HNF-1alpha), HNF-4alpha, and HNF-6 genes and size at birth in a population-based sample of young Danish subjects. J Clin Endocrinol Metab 2000; 85: 2951–3.
- 124 Lindsay RS, Dabelea D, Roumain J, Hanson RL, Bennett PH, Knowler WC. Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 2000; 49: 445–9.
- 125 Fall JG, Pulford DJ, Wylie AA, Jirtle RL. Genomic imprinting: implications for human disease. Am J Pathol 1999; 154: 635–47.
- 126 Morison IM, Reeve AE. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet 1998; 7: 1599–609.
- 127 Huxtable SJ, Saker PJ, Haddad L, Walker M, Frayling TM, Levy JC, Hitman GA, O'Rahilly S, Hattersley AT, McCarthy MI. Analysis of parent-offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class III variable number tandem repeat alleles. Diabetes 2000; 49: 126–30.
- 128 Poulsen P, Vaag AA, Kyvik KO, Moller JD, Beck-Nielsen H. Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 1997; 40: 439–46.
- 129 Baird J, Osmond C, MacGregor A, Sneider H, Hales CN, Phillips DIW. Testing the fetal origins hypothesis in twins: the Birmingham twin study. Diabetologia 2001; 44: 33–9.