IFN-γ inhibits the production of latent transforming growth factor-β1 by mouse inflammatory macrophages
Heike Schindler
Institute of Clinical Microbiology and Immunology, University of Erlangen, Erlangen, Germany
Search for more papers by this authorAndreas Diefenbach
Institute of Clinical Microbiology and Immunology, University of Erlangen, Erlangen, Germany
Search for more papers by this authorMartin Röllinghoff
Institute of Clinical Microbiology and Immunology, University of Erlangen, Erlangen, Germany
Search for more papers by this authorChristian Bogdan
Institute of Clinical Microbiology and Immunology, University of Erlangen, Erlangen, Germany
Search for more papers by this authorHeike Schindler
Institute of Clinical Microbiology and Immunology, University of Erlangen, Erlangen, Germany
Search for more papers by this authorAndreas Diefenbach
Institute of Clinical Microbiology and Immunology, University of Erlangen, Erlangen, Germany
Search for more papers by this authorMartin Röllinghoff
Institute of Clinical Microbiology and Immunology, University of Erlangen, Erlangen, Germany
Search for more papers by this authorChristian Bogdan
Institute of Clinical Microbiology and Immunology, University of Erlangen, Erlangen, Germany
Search for more papers by this authorAbstract
Transforming growth factor (TGF)-β is a multifunctional cytokine, which in mammals exists in three isoforms (TGF-β1, 2 and 3). It is synthesized by a variety of cells including macrophages, and exerts potent immunoregulatory effects such as the inhibition of Th1 development and the suppression or reversal of IFN-γ-induced macrophage activation. In this study we analyzed the effect of IFN-γ on the production of TGF-β1 by thioglycolate-elicited mouse peritoneal macrophages under serum-free conditions. Untreated macrophages released TGF-β1 in its latent form, which became detectable in a capture ELISA specific for active TGF-β1 after acid activation of the culture supernatants. Treatment with IFN-γ reduced the amount of latent TGF-β1 in the culture supernatants in a dose-dependent fashion. The effect of IFN-γ was confirmed by a newly developed Western blot system for the detection of mouse TGF-β1 protein. IFN-γ only weakly (16 – 24 %) reduced the levels TGF-β1 mRNA at early and late time points of stimulation, and no evidence was obtained that IFN-γ suppresses the secretion of latent TGF-β1. Thus, inhibition of TGF-β1 production by IFN-γ is most likely due to decreased synthesis and/or stability of the TGF-β1 protein, and might be important for the generation of fully activated macrophages and a Th1 response.
References
- 1 Massagué, J., The transforming growth factor-β family. Annu. Rev. Cell Biol. 1990. 6: 597–641.
- 2 McCartney-Francis, N. L. and Wahl, S. M. Transforming growth factor β: a matter of life and death. J. Leukoc. Biol. 1994. 55: 401–409.
- 3 Border, W. A. and Noble, N. A., Transforming growth factor-β in tissue fibrosis. N. Engl. J. Med. 1994. 331: 1286–1292.
- 4 Massague, J., TGF-beta signalling: receptors, transducers and Mad proteins. Cell 1996. 85: 947–950.
- 5 Twardzik, D. R., Mikovits, J. A., Ranchalis, J. E., Purchio, A. F., Ellingsworth, L. and Ruscetti, F. W., γ-lnterferon-induced activation of latent transforming growth factor-β by human monocytes. Ann. NY Acad. Sci. 1990. 593: 713–739.
- 6 Betz-Corradin, S., Buchmuller-Rouillier, Y., Smith, J., Suardet, L. and Mauel, J., Transforming growth factor-β1 regulation of macrophage activation depends on the triggering stimulus. J. Leukoc. Biol. 1993. 54: 423–429.
- 7 Nunes, I., Shapiro, R. L. and Rifkin, D. B., Characterization of latent TGF-β activation by murine peritoneal macrophages. J. Immunol. 1996. 155: 1450–1459.
- 8 Derynck, R., Jarrett, J. A., Chen, E. Y. and Goeddel, D. V., The murine transforming growth factor-β precursor. J. Biol. Chem. 1986. 261: 4377–4379.
- 9 Bogdan, C. and Nathan, C., Modulation of macrophage function by transforming growth factor-β, interleukin 4 and interleukin 10. Ann. NY Acad. Sci. 1993. 685: 713–739.
- 10 Vodovotz, Y. and Bogdan, C., Control of nitric oxide synthase expression by transforming growth factor-β: implications for homeostasis. Prog. Growth Factor Res. 1994. 5: 341–351.
- 11 Tsunawaki, S., Sporn, M., Ding, A. and Nathan, C., Deactivation of macrophages by transforming growth factor-β. Eur. J. Immunol. 1988. 334: 260–262.
- 12 Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q.-W. and Nathan, C., Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor-β. J. Exp. Med. 1993. 178: 605–613.
- 13 Bogdan, C., Paik, J., Vodovotz, Y. and Nathan, C., Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-β and interleukin-10. J. Biol. Chem. 1992. 267: 23301–23308.
- 14 Silva, J. S., Twardzik, D. R. and Reed, S. G., Regulation of Trypanosoma cruzi infections in vitro and in vivo by transforming growth factor β (TGF-β). J. Exp. Med. 1991. 174: 539–545.
- 15 Bermudez, L. E., Production of transforming growth factor-p by Mycobacterium avium-infected human macrophages is associated with unresponsiveness to IFN-γ. J. Immunol. 1993. 150: 1838–1845.
- 16 Hirsch, C. S., Yoneda, T., Averill, L., Ellner, J. J. and Toossi, Z., Enhancement of intracellular growth of Mycobacterium tuberculosis in human monocytes by transforming growth factor-β1. J. Infect. Dis. 1994. 170: 1229–1237.
- 17 Hunter, C. A., Bermudez, L., Waegell, W. and Remington, J. S., Transforming growth factor-β inhibits interleukin-12-induced production of interferon-γ by natural killer cells: a role for transforming growth factor-β in the regulation of T cell-independent resistance to Toxoplasma gondii. Eur. J. Immunol. 1995. 25: 994–1000.
- 18 Hoehn, P., Goedert, S., Germann, T., Koelsch, S., Jin, S., Palm, N., Ruede, E. and Schmitt, E., Opposing effects of TGF-β2 on the Th1 development of naive CD4+ T cells isolated from different mouse strains. J. Immunol. 1995. 155: 3788–3793.
- 19 Schmitt, E., Hoehn, P., Huels, C., Goedert, S., Palm, N., Rude, E. and Germann, T., T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin 12 and interferon-y and is inhibited by transforming growth factor-β. Eur. J. Immunol. 1994. 24: 793–798.
- 20 Swain, S., Huston, G., Tonkonogy, S. and Weinberg, A., Transforming growth factor-β and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J. Immunol. 1991. 147: 2991–3000.
- 21 Fargeas, C., Wu, C. Y., Nakajima, T., Cox, D., Nutman, T. and Delespesse, G., Differential effect of transforming growth factor-β on the synthesis of Th1-and Th2-like lymphokines by human T lymphocytes. Eur. J. Immunol. 1992. 22: 2173–2176.
- 22 Ranchalis, J. E., Gentry, L., Ogawa, Y., Seyedin, S. M., McPherson, J., Purchio, A. and Twardzik, D. R., Bonederived and recombinant transforming growth factor β's are potent inhibitors of tumor cell growth. Biochem. Biophys. Res. Commun. 1987. 148: 783–789.
- 23 Assoian, R. K., Fleurdelys, B. E., Stevenson, H. C., Miller, P. J., Madtes, D. K., Raines, E. W., Ross, R. and Sporn, M. B., Expression and secretion of type p transforming growth factor by activated human macrophages. Proc. Natl. Acad. Sci. USA 1987. 84: 6020–6024.
- 24 Toossi, Z., Hirsch, C. S., Hamilton, B. D., Knuth, C. K., Friedlander, M. A. and Rich, E. A., Decreased production of TGF-β1 by human alveolar macrophages compared with blood monocytes. J. Immunol. 1996. 156: 3461–3468.
- 25 Toossi, Z., Young, T.-G., Averill, L. E., Hamilton, B. D., Shiratsuchi, H. and Ellner, J. J., Induction of transforming growth factor β1 by purified protein derivative of Mycobacterium tuberculosis. Infect. Immun. 1995. 63: 224–228.
- 26 Noble, P. W., Henson, P. M., Lucas, C., Mora-Worms, M., Carré, P. C. and Riches, D. W. H., Transforming growth factor-β primes macrophages to express inflammatory gene products in response to particulate stimuli by an autocrine/paracrine mechanism. J. Immunol. 1993. 151: 979–989.
- 27 Williams, M. E., Caspar, P., Oswald, I., Sharma, H. K., Pankewycz, O., Sher, A. and James, S. L., Vaccination routes that fail to elicit protective immunity against Schistosoma mansoni induce the production of TGF-β, which downregulates macrophage antiparasitic activity. J. Immunol. 1995. 154: 4693–4700.
- 28 Marth, T., Strober, W., Seder, R. A. and Kelsall, B. L., Regulation of transforming growth factor-β production by interleukin-12. Eur. J. Immunol. 1997. 27: 1213–1220.
- 29 Kim, S.-J., Park, K., Koeller, D., Kim, K. Y., Wakefield, L. M., Sporn, M. B. and Roberts, A. B., Post-transcriptional regulation of the human transforming growth factor-β1 gene. J. Biol. Chem. 1992. 267: 13702–13707.
- 30 Bristol, L. A., Ruscetti, F. W., Brody, D. T. and Durum, S. K., IL-1α induces expression of active transforming growth factor in non-proliferating T cells via a post-transcriptional mechanism. J. Immunol. 1990. 145: 4108–4114.
- 31 Nelson, B. J., Danielpour, D., Rossio, J. L., Turpin, J. and Nacy, C. A., Interleukin-2 suppresses activated macrophage intracellular killing activity by inducing macrophages to secrete TGF-β. J. Leukoc. Biol. 1994. 55: 81–90.
- 32 Villiger, P. M., Kusari, A. B., Dijke, P. and Lotz, M., IL-1b and IL-6 selectively induce transforming growth factor-β isoforms in human articular chondrocytes. J. Immunol. 1993. 151: 3337–3344.
- 33 Van Obberghen-Schilling, E., Roche, N. S., Flanders, K. C., Sporn, M. B. and Roberts, A. B., Transforming growth factor-β1 positively regulates its own expression in normal and transformed cells. J. Biol. Chem. 1988. 263: 7741–7746.
- 34 Dubinett, S. M., Huang, M., Dhanani, S., Wang, J. and Beroiza, T., Down-regulation of macrophage transforming growth factor-β mRNA expression by IL-7. J. Immunol. 1993. 151: 6670–6680.
- 35 Danielpour, D., Improved sandwich enzyme-linked immunosorbent assays for transforming growth factor-β1. J. Immunol. Methods 1993. 158: 17–25.
- 36 Roberts, A. B., Lamb, L. C., Newton, D. L., Sporn, M. B., de Larco, J. E. and Todaro, G. J., Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc. Natl. Acad. Sci. USA 1980. 77: 3494–3499.
- 37 Lucas, C., Bald, L. N., Fendly, B. M., Mora-Worms, M., Figari, I. S., Patzer, E. J. and Palladino, M. A., The autocrine production of transforming growth factor-β1 during lymphocyte activation. A study with a monoclonal antibody-based ELISA. J. Immunol. 1990. 145: 1415–1422.
- 38 Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal. Biochem. 1987. 162: 156–159.
- 39 Tapper, R. G., Pater, M. M., Pater, A., Xu, H.-M. and Studzinski, G. P., Mitochondrial nucleic acids as internal standards for blot hybridization analyses. Anal. Biochem. 1992. 203: 127–133.
- 40 Stenger, S., Thuring, H., Röllinghoff, M. and Bogdan, C., Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major. J. Exp. Med. 1994. 180: 783–793.
- 41 Förster, E., An improved general method to generate internal standards for competitive PCR. Biotechniques 1994. 16: 18–20.