Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory
Corresponding Author
William S. Price
Water Research Institute, Sengen 2-1-6, Tsukuba, Ibaraki 305, Japan
Water Research Institute, Sengen 2-1-6, Tsukuba, Ibaraki 305, Japan. Ph: (81-298) 58 6186, FAX: (81-298) 58 6144Search for more papers by this authorCorresponding Author
William S. Price
Water Research Institute, Sengen 2-1-6, Tsukuba, Ibaraki 305, Japan
Water Research Institute, Sengen 2-1-6, Tsukuba, Ibaraki 305, Japan. Ph: (81-298) 58 6186, FAX: (81-298) 58 6144Search for more papers by this authorAbstract
Translational diffusion is the most fundamental form of transport in chemical and biochemical systems. Pulsed-field gradient nuclear magnetic resonance provides a convenient and noninvasive means for measuring translational motion. In this method the attenuation of the echo signal from a Hahn spin-echo pulse sequence containing a magnetic field gradient pulse in each τ period is used to measure the displacement of the observed spins. In the present article, the physical basis of this method is considered in detail. Starting from the Bloch equations containing diffusion terms, the (analytical) equation linking the echo attenuation to the diffusion of the spin for the case of unrestricted isotropic diffusion is derived. When the motion of the spin occurs within a confined geometry or is anisotropic, such as in in vivo systems, the echo attenuation also yields information on the surrounding structure, but as the analytical approach becomes mathematically intractable, approximate or numerical means must be used to extract the motional information. In this work, two common approximations are considered and their limitations are examined. Measurements in anisotropic systems are also considered in some detail. ©1997 John Wiley & Sons, Inc. Concepts Magn Reson 9: 299–336, 1997
References
- 1 E. Hawlicka, “Self-Diffusion in Multicomponent Liquid Systems,” Chem. Soc. Rev., 1995, 34, 13743–13750.
- 2 R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 1986.
- 3 M. A. Lauffer, Motion in Biological Systems, Alan R. Liss, New York, 1989.
- 4 A. G. Marshall, Biophysical Chemistry Principles, Techniques and Applications, Wiley, New York, 1978.
- 5 D. C. Teller, E. Swanson and C. De Haën, “The Translational Friction Coefficient of Proteins,” Methods Enzymol. 1979, 61, 103–124.
- 6 J. G. de la Torre and V. Bloomfield, “Hydrody-namic Properties of Complex, Rigid, Biomole-cules: Theory and Applications,” Q. Rev. Biophys., 1981, 14, 81–139.
- 7 J. G. de la Torre, S. Navarro, M. C. L. Martinez, F. G. Diaz and J. J. L. Cascales, “HYDRO: A Computer Program for the Prediction of Hydro-dynamic Properties of Macromolecules,” Biophys. J. 1994, 67, 530–531.
- 8 D. E. Woessner, “ Brownian Motion and Correlation Times,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 1068–1084.
- 9 D. E. Woessner, “ Relaxation Effects of Chemical Exchange,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 4018–4028.
- 10 R. Lenk, Fluctuations, Diffusion and Spin Relaxation, Elsevier, Amsterdam, 1986.
- 11 P. Stilbs, “Fourier Transform Pulsed-Gradient Spin-Echo Studies of Molecular Diffusion,” Progr. NMR Spectrosc. 1987, 19, 1–45.
- 12
J. Kärger,
H. Pfeifer and
W. Heink,
“Principles and Applications of Self-Diffusion Measurements by Nuclear Magnetic Resonance,”
Adv. Magn. Reson.,
1988,
12,
1–89.
10.1016/B978-0-12-025512-2.50004-X Google Scholar
- 13 R. L. Haner and T. Schleich, “Measurement of Translational Motion by Pulse-Gradient Spin-Echo Nuclear Magnetic Resonance,” Methods Enzymol., 1989, 176, 418–446.
- 14
P. T. Callaghan and
A. Coy,
“ PGSE NMR and Molecular Translational Motion in Porous Media,” in
NMR Probes and Molecular Dynamics,
P. Tycko, Ed.
Kluwer,
Dordrecht,
1994,
pp. 489–523.
10.1007/978-94-011-1410-3_11 Google Scholar
- 15 D. Canet and M. Décorps, “ Applications of Field Gradients in NMR,” in Dynamics of Solutions and Fluid Mixtures, J.-J. Delpuech, Ed. Wiley, New York, 1995, pp. 309–343.
- 16 J. Kärger, “ Diffusion in Porous Media,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 1656–1663.
- 17 C. S. Johnson, Jr., “ Diffusion Measurements by Magnetic Field Gradient Methods,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 1626–1644.
- 18 K. J. Packer, “ Diffusion & Flow in Liquids,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 1615–1626.
- 19 W. S. Price, “ Gradient NMR,” in Annual Reports on NMR Spectroscopy, G. A. Webb, Ed. Academic Press, London, 1996, pp. 51–142.
- 20 R. Mills and H. G. Hertz, “Application of the Velocity Cross-Correlation Method to Binary Nonelectrolyte Mixtures,” J. Phys. Chem., 1980, 84, 220–224.
- 21 W. S. Price, P. W. Kuchel and B. A. Cornell, “Microviscosity of Human Erythrocytes Studied with Hypophosphite and 31P-NMR,” Biophys. Chem., 1989, 33, 205–215.
- 22 W. S. Price and L.-P. Hwang, “Some Recent Developments in NMR Approaches for Studying Liquid Molecular Dynamics and their Biological Applications,” J. Chin. Chem. Soc. (Taipei), 1992, 39, 479–496.
- 23 W. S. Price, B. E. Chapman and P. W. Kuchel, “Correlation of Viscosity and Conductance with 23Na+NMR T1 Measurements,” Bull. Chem. Soc. Jpn., 1990, 63, 2961–2965.
- 24 J. McConnell, Nuclear Magnetic Relaxation in Liquids, Cambridge University Press, Cambridge, 1987.
- 25
P. Debye,
Polar Molecules,
Dover Publications,
New York,
1945.
10.1111/j.2164-0947.1945.tb00183.x Google Scholar
- 26 N. Bloembergen, E. M. Purcell and R. V. Pound, “Relaxation Effects in Nuclear Magnetic Resonance Absorption,” Phys. Rev., 1948, 73, 679–712.
- 27 J. W. Hennel and J. Klinowski, Fundamentals of Nuclear Magnetic Resonance, Longman Scientific & Technical, Essex, 1993.
- 28 W. S. Price, B.-C. Perng, C.-L. Tsai and L.-P. Hwang, “Microviscosity of Human Erythrocytes Studied using Hypophosphite Two-Spin Order Relaxation,” Biophys. J., 1992, 61, 621–630.
- 29 D. Canet, “ Radiofrequency Gradient Pulses,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds., Wiley, New York, 1996, pp. 3938–3944.
- 30 D. Canet, “Radiofrequency Field Gradient Experiments,” Progr. NMR Spectrosc., 1997, 30, 101–135.
- 31 R. E. Hurd, “Gradient-Enhanced Spectroscopy,” J. Magn. Reson., 1990, 87, 422–428.
- 32 P. C. M. Van Zijl and C. T. W. Moonen, “Complete Water Suppression for Solutions of Large Molecules Based on Diffusional Differences between Solute and Solvent (DRYCLEAN),” J. Magn. Reson., 1990, 87, 18–25.
- 33 P. C. M. Van Zijl and C. T. W. Moonen, “Solvent Suppression Strategies for In Vivo Magnetic Resonance Spectroscopy,” NMR Basic Princ. Progr., 1992, 26, 67–108.
- 34 J. Keeler, R. T. Clowes, A. L. Davis and E. D. Laue, “Pulsed-Field Gradients: Theory and Practice,” Methods Enzymol., 1994, 239, 145–207.
- 35 J. R. Tolman and J. H. Prestegard, “Homonuclear Correlation Experiments Using Pulsed-Field Gradients,” Concepts Magn. Reson. 1995, 7, 247–262.
- 36 J.-M. Zhu and I. C. P. Smith, “Selection of Coherence Transfer Pathways by Pulsed-Field Gradients in NMR Spectroscopy,” Concepts Magn. Re-son. 1995, 7, 281–291.
- 37 R. E. Hurd, “ Field Gradients & Their Application,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 1990–2005.
- 38 T. Parella, “High-Quality 1D Spectra by Implementing Pulsed-Field Gradients as the Coherence Pathway Selection Procedure,” Magn. Reson. Chem., 1996, 34, 329–347.
- 39 W. S. Price and Y. Arata, “The Manipulation of Water Relaxation and Water Suppression in Biological Systems Using the Water-PRESS Pulse Sequence,” J. Magn. Reson., 1996, B112, 190–192.
- 40 W. S. Price, K. Hayamizu and Y. Arata, “Optimization of the Water-PRESS Pulse Sequence and Its Integration into Pulse Sequences for Studying Biological Molecules,” J. Magn. Reson., in press.
- 41
P. T. Callaghan,
Principles of Nuclear Magnetic Resonance Microscopy,
Clarendon Press,
Oxford,
1991.
10.1093/oso/9780198539445.001.0001 Google Scholar
- 42
S. L. Talagala and
I. J. Lowe,
“Introduction to Magnetic Resonance Imaging,”
Concepts Magn. Reson.,
1991,
3,
145–159.
10.1002/cmr.1820030303 Google Scholar
- 43 Y. Xia, “Contrast in NMR Imaging and Microscopy,” Concepts Magn. Reson., 1996, 8, 205–225.
- 44 W. S. Price, “ NMR Imaging,” in Annual Reports on NMR Spectroscopy, G. A. Webb, Ed., Academic Press, London, 1997.
- 45 P. J. Basser, J. Mattiello and D. Le Bihan, “MR Diffusion Tensor Spectroscopy and Imaging,” Bio-phys. J., 1994, 66, 259–267.
- 46 O. Henriksen, “ Diffusion: Clinical Utility of MRI Studies,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 1605–1614.
- 47 D. Le Bihan, “ Diffusion & Perfusion in MRI,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 1645–1656.
- 48 M. E. Moseley and A. de Crespigny, “ Anisotropi-cally Restricted Diffusion in MRI,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 834–839.
- 49 C. Pierpaoli, P. Jezzard, P. J. Besser, A. Barnett and G. Di Chiro, “Diffusion Tensor MR Imaging of the Human Brain,” Radiology, 1996, 201, 637–648.
- 50 C. Decanniere, S. Eleff, D. Davis and P. C. M. Van Zijl, “Correlation of Rapid Changes in the Average Water Diffusion Constant and the Concentrations of Lactate and ATP Breakdown Products during Global Ischemia in Cat Brain,” Magn. Reson. Med., 1995, 34, 343–352.
- 51 G. Arfken, Mathematical Methods for Physicists, Academic Press, New York, 1995.
- 52 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
- 53 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1994.
- 54 E. O. Stejskal and J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys., 1965, 42, 288–292.
- 55 E. O. Stejskal, “Use of Spin Echoes in a Pulsed Magnetic-Field Gradient to Study Anisotropic Restricted Diffusion and Flow,” J. Chem. Phys., 1965, 43, 3597–3603.
- 56 J. E. Tanner and E. O. Stejskal, “Restricted Self-Diffusion of Protons in Colloidal Systems by the Pulsed-Gradient, Spin-Echo Method,” J. Chem. Phys., 1968, 49, 1768–1777.
- 57 E. L. Hahn, “Spin Echoes,” Phys. Rev., 1950, 80, 580–594.
- 58 H. Y. Carr and E. M. Purcell, “Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments,” Phys. Rev., 1954, 94, 630–638.
- 59 A. G. Avent, “ Spin Echo Spectroscopy of Liquid Samples,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 4524–4530.
- 60 D. C. Douglass and D. W. McCall, “Diffusion in Paraffin Hydrocarbons,” J. Chem. Phys., 1958, 62, 1102–1107.
- 61 P. A. Egelstaff, An Introduction to the Liquid State, Oxford Science Publications, Oxford, 1994.
- 62 J. Crank, The Mathematics of Diffusion, Oxford University Press, Oxford, 1975.
- 63 J. Kärger and W. Heink, “The Propagator Representation of Molecular Transport in Microporous Crystallites,” J. Magn. Reson., 1983, 51, 1–7.
- 64 L. Debnath, Integral Transforms and Their Applications, CRC Press, Boca Raton, FL, 1995.
- 65 N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North Holland, Amsterdam, 1981.
- 66 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, Oxford, 1959.
- 67 R. Lamanna, M. Delmelle and S. Cannistraro, “Solvent Stokes-Einstein Violation in Aqueous Protein Solutions,” Phys. Rev., 1994, E49, 5878–5880.
- 68 R. Mills, “Self-Diffusion in Normal and Heavy Water in the Range 1–45 Degrees,” J. Phys. Chem., 1973, 77, 685–688.
- 69 H. Weingärtner, “Self-Diffusion in Liquid Water. A Reassessment,” Z. Phys. Chem., 1982, 132, 129–149.
- 70 W. S. Price and P. W. Kuchel, “Restricted Diffusion of Bicarbonate and Hypophosphite Ions Modulated by Transport in Suspensions of Red Blood Cells,” J. Magn. Reson., 1990, 90, 100–110.
- 71 W. S. Price, B. E. Chapman, B. A. Cornell and P. W. Kuchel, “Translational Diffusion of Glycine in Erythrocytes Measured at High Resolution with Pulsed Field Gradients,” J. Magn. Reson., 1989, 83, 160–166.
- 72 J. H. Wang, “Theory of Self-diffusion of Water in Protein Solutions. A New Method for Studying the Hydration and Shape of Protein Molecules,” J. Am. Chem. Soc., 1954, 76, 4755–4763.
- 73 P. T. Callaghan and J. Lelievre, “The Size and Shape of Amylopectin: A Study Using Pulsed Field Gradient Nuclear Magnetic Resonance,” Biopolymers, 1985, 24, 441–460.
- 74 H. Jóhannesson and B. Halle, “Solvent Diffusion in Ordered Macrofluids: A Stochastic Simulation Study of the Obstruction Effect,” J. Chem. Phys., 1996, 104, 6807–6817.
- 75 H. C. Torrey, “Bloch Equations with Diffusion Terms,” Phys. Rev., 1956, 104, 563–565.
- 76 A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961.
- 77 Maple V. Release 4, Waterloo Maple, Inc., Waterloo, ON, Canada, 1996.
- 78 W. S. Price and P. W. Kuchel, “Effect of Nonrect-angular Field Gradient Pulses in the Stejskal and Tanner (Diffusion) Pulse Sequence,” J. Magn. Reson., 1991, 94, 133–139.
- 79 C. H. Neuman, “Spin Echo of Spins Diffusing in a Bounded Medium,” J. Chem. Phys., 1974, 60, 4508–4511.
- 80 D. W. McCall, D. C. Douglass and E. W. Anderson, “Self-Diffusion Studies by Means of Nuclear Magnetic Resonance Spin-Echo Techniques,” Ber. Bunsenges. Phys. Chem., 1963, 67, 336–340.
- 81 P. T. Callaghan, C. D. Eccles and Y. Xia, “NMR Microscopy of Dynamic Displacement: k-Space and q-Space Imaging,” J. Phys., 1988, E21, 820–822.
- 82 A. G. Marshall and F. R. Verdun, Fourier Transforms in NMR, Optical and Mass Spectroscopy: A User's Handbook, Elsevier, Amsterdam, 1990.
- 83 P. A. Angelidis, “Spectrum Estimation and the Fourier Transform in Imaging and Spectroscopy,” Concepts Magn. Reson., 1996, 8, 339–381.
- 84 P. T. Callaghan, “Pulsed Field Gradient Nuclear Magnetic Resonance as Probe of Liquid State Molecular Organization,” Aust. J. Phys., 1984, 37, 359–387.
- 85 P. T. Callaghan, D. MacGowan, K. J. Packer and F. O. Zelaya, “High-Resolution q-Space Imaging in Porous Structures,” J. Magn. Reson., 1990, 90, 177–182.
- 86 G. Fleischer and F. Fujara, “NMR as a Generalized Incoherent Scattering Experiment,” NMR Basic Princ. Progr., 1994, 30, 157–207.
- 87 P. T. Callaghan, “NMR Imaging, NMR Diffraction and Its Applications of Pulsed Gradient Spin Echoes in Porous Media,” Magn. Reson. Imaging, 1996, 14, 701–709.
- 88 D. A. McQuarrie, Statistical Mechanics, Harper & Row, New York, 1976.
- 89 P. T. Callaghan, A. Coy, D. MacGowan, K. J. Packer and F. O. Zelaya, “Diffraction-like Effects in NMR Diffusion of Fluids in Porous Solids,” Nature, 1991, 351, 467–469.
- 90 D. G. Cory and A. N. Garroway, “Measurement of Translational Displacement Probabilities by NMR: An Indicator of Compartmentation,” Magn. Reson. Med., 1990, 14, 435–444.
- 91 P. T. Callaghan, A. Coy, D. MacGowan and K. J. Packer, “Diffusion of Fluids in Porous Solids Probed by Pulsed Field Gradient Spin Echo NMR,” J. Mol. Liquids, 1992, 54, 239–251.
- 92 M. Appel, G. Fleischer, D. Geschke, J. Kärger and M. Winkler, “Pulsed-Field-Gradient NMR Analogue of the Single-Slit Diffraction Pattern,” J. Magn. Reson., 1996, A122, 248–250.
- 93 P. Mansfield and P. K. Grannel, “‘Diffraction’ and Microscopy in Solids and Liquids by NMR,” Phys. Rev., 1975, B12, 3618–3634.
- 94 P. Linse and O. Söderman, “The Validity of the Short-Gradient-Pulse Approximation in NMR Studies of Restricted Diffusion. Simulations of Molecules Diffusing between Planes, in Cylinders and Spheres,” J. Magn. Reson., 1995, A116, 77–86.
- 95 K. J. Packer, “ Oil Reservoir Rocks Examined by MRI,” in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant and R. K. Harris, Eds. Wiley, New York, 1996, pp. 3365–3375.
- 96 P. P. Mitra and P. N. Sen, “Effects of Microgeom-etry and Surface Relaxation on NMR Pulsed-Field-Gradient Experiments: Simple Pore Geometries,” Phys. Rev., 1992, B45, 143–156.
- 97 P. P. Mitra and P. N. Sen, “Effects of Surface Relaxation on NMR Pulsed Field Gradient Experiments in Porous Media,” Physica, 1992, A186, 109–114.
- 98 L. L. Latour, P. P. Mitra, R. L. Kleinberg and C. H. Sotak, “Time-Dependent Diffusion Coefficient of Fluids in Porous Media as a Probe of Surface-to-Volume Ratio,” J. Magn. Reson. 1993, A101, 342–346.
- 99 A. Caprihan, L. Z. Wang and E. Fukushima, “A Multiple-Narrow-Pulse Approximation for Restricted Diffusion in a Time-Varying Field Gradient,” J. Magn. Reson., 1996, A118, 94–102.
- 100 D. Sheltraw and V. M. Kenkre, “The Memory-Function Technique for the Calculation of Pulsed-Gradient NMR Signals in Confined Geometries,” J. Magn. Reson., 1996, A122, 126–136.
- 101 B. Balinov, B. Jönsson, P. L. Linse and O. Söder-man, “The NMR Self-Diffusion Method Applied to Restricted Diffusion. Simulation of Echo Attenuation from Molecules in Spheres and between Planes,” J. Magn. Reson., 1993, A104, 17–25. Note: correction to Eq. [3] in J. Magn. Reson., 1994, A108, 130.
- 102 M. H. Blees, “The Effect of Finite Duration of Gradient Pulses on the Pulsed-Field-Gradient NMR Method of Studying Restricted Diffusion,” J. Magn. Reson., 1994, A109, 203–209.
- 103 P. P. Mitra and B. I. Halperin, “Effects of Finite Gradient Pulse Widths in Pulsed Field Gradient Diffusion Measurements,” J. Magn. Reson., 1995, A113, 94–101.
- 104 L. Z. Wang, A. Caprihan and E. Fukushima, “The Narrow-Pulse Criterion for Pulsed-Gradient Spin-Echo Diffusion Measurements,” J. Magn. Reson., 1995, A117, 209–219.
- 105 A. Coy and P. T. Callaghan, “Pulsed Gradient Spin Echo Nuclear Magnetic Resonance for Molecules Diffusing between Partially Reflecting Rectangular Barriers,” J. Chem. Phys., 1994, 101, 4599–4609.
- 106 J. S. Murday and R. M. Cotts, “Self-Diffusion Coefficient of Liquid Lithium,” J. Chem. Phys., 1968, 48, 4938–4945.
- 107 J. E. Tanner, “Transient Diffusion in a System Partitioned by Permeable Barriers. Application to NMR Measurements with a Pulsed Field Gradient,” J. Cheni. Phys., 1978, 69, 1748–1754.
- 108 J. E. M. Snaar and H. Van As, “NMR Self-Diffusion Measurements in a Bound System with Loss of Magnetization at the Walls,” J. Magn. Reson., 1993, A102, 318–326.
- 109 A. V. Barzykin, W. S. Price, K. Hayamizu and M. Tachiya, “Pulsed Field Gradient NMR of Diffusive Transport through a Spherical Interface into an External Medium Containing a Relaxation Agent,” J. Magn. Reson., 1995, A114, 39–46.
- 110 P. T. Callaghan, “Pulsed Gradient Spin Echo NMR for Planar, Cylindrical and Spherical Pores under Conditions of Wall Relaxation,” J. Magn. Reson., 1995, A113, 53–59.
- 111 P. W. Kuchel, A. J. Lennon and C. J. Durrant, “Analytical Solutions and Simulations for Spin-Echo Measurements of Diffusion of Spins in a Sphere with Surface and Bulk Relaxation,” J. Magn. Reson., 1996, B112, 1–17.
- 112 D. Le Bihan, “Molecular Diffusion, Tissue Micro-dynamics and Microstructure,” NMR Biomed., 1995, 8, 375–386.
- 113 E. W. Hsu, N. R. Aiken and S. J. Blackband, “A Study of Diffusion Isotropy in Single Neurons by Using NMR Microscopy,” Magn. Reson. Med., 1997, 37, 624–627.
- 114 P. J. Basser, J. Mattiello and D. Le Bihan, “Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo,” J. Magn. Reson., 1994, B103, 247–254.
- 115 B. L. Silver, Irreducible Tensor Methods, Academic Press, New York, 1976.
- 116 J. Mattiello, P. J. Basser and D. Le Bihan, “Analytical Expressions for the b Matrix in NMR Diffusion Imaging and Spectroscopy,” J. Magn. Re-son., 1994, A108, 131–141.
- 117
O. Söderman and
B. Jönsson,
“Restricted Diffusion in Cylindrical Geometry,”
J. Magn. Reson.,
1995,
A117,
94–97.
10.1006/jmra.1995.0014 Google Scholar
- 118 S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover, New York, 1984.
- 119 C. Pierpaoli and P. J. Basser, “Toward a Quantitative Assessment of Diffusion Anisotropy,” Magn. Reson. Med., 1996, 36, 893–906.
- 120 P. van Gelderen, D. Despres, P. C. M. Van Zijl and C. T. W. Moonen, “Evaluation of Restricted Diffusion in Cylinders: Phosphocreatine in Rabbit Leg Muscle,” J. Magn. Reson., 1994, B103, 255–260.
- 121 T. M. De Swiet and P. P. Mitra, “Possible Systematic Errors in Single-Shot Measurements of the Trace of the Diffusion Tensor,” J. Magn. Reson., 1996, B111, 15–22.
- 122 G. Celebre, L. Coppola and G. A. Raineri, “Water Self-Diffusion in Lyotropic Systems by Simulation of Pulsed Field Gradient Spin Echo Nuclear Magnetic Resonance Experiments,” J. Chem. Phys., 1992, 97, 7781–7785.
- 123 P. T. Callaghan, M. A. Le Gros and D. N. Pinder, “The Measurement of Diffusion Using Deuterium Pulsed Gradient Nuclear Magnetic Resonance,” J. Chem. Phys., 1983, 79, 6372–6381.
- 124 G. Celebre, L. Coppola, G. A. Ranieri and M. Terenzi, “Analysis of the PFG-SE NMR Experiments in Lyotropic Mesophases: The Hexagonal Case,” Mol. Cryst. Liquid Cryst., 1994, 238, 117–123.
- 125 P. T. Callaghan, K. W. Jolley and J. Lelievre, “Diffusion of Water in the Endosperm Tissue of Wheat Grains as Studied by Pulsed Field Gradient Nuclear Magnetic Resonance,” Biophys. J., 1979, 28, 133–142.