Hydrophilization of microporous polypropylene Celgard® membranes by the chemical modification technique
D. H. Garg
Research Center, GSFC Ltd., Fertilizernagar-391750, Baroda, India
Search for more papers by this authorW. Lenk
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Search for more papers by this authorCorresponding Author
S. Berwald
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany===Search for more papers by this authorK. Lunkwitz
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Search for more papers by this authorF. Simon
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Search for more papers by this authorK.-J. Eichhorn
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Search for more papers by this authorD. H. Garg
Research Center, GSFC Ltd., Fertilizernagar-391750, Baroda, India
Search for more papers by this authorW. Lenk
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Search for more papers by this authorCorresponding Author
S. Berwald
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany===Search for more papers by this authorK. Lunkwitz
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Search for more papers by this authorF. Simon
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Search for more papers by this authorK.-J. Eichhorn
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
Search for more papers by this authorAbstract
Microporous hydrophobic polypropylene (PP) membranes (Celgard® 2400 and 2500) were modified by the chemical modification technique to impart permanent hydrophilicity. The modification was carried out in two stages. In the first stage, the membranes were hydroxylated by treatment with aqueous potassium peroxydisulfate solution under a strong flow of nitrogen. In the second stage, the hydroxylated membranes were subjected to grafting of acrylamide using cerric ammonium nitrate as an initiator. Subsequently, acrylamide grafted PP membranes were partially hydrolyzed to have carboxvl functional groups at the membrane surfaces. Under given experimental conditions the grafting also took place within the pores of the microporous structure of hydrophobic PP Celgard® membranes. Modified membranes exhibited permanently wettable characteristics by aqueous solutions and appeared translucent when immersed in water. Contact angle measurements showed excellent wetting properties with water. In contrast to unmodified Celgard® membrane, the modified membranes exhibit water permeability even after repeated drying. Membranes were further characterized by FTIR and ESCA for the different types of functional groups. © 1996 John Wiley & Sons, Inc.
References
- 1 H. Iwata, A. Kishida, M. Suzuki, Y. Hata, and Y. Ikado, J. Polym. Sci., Polym. Chem. Ed., 26, 3303 (1984).
- 2 M. Karakelle and R. J. Zdrahala, J. Membr. Sci., 41, 305 (1989).
- 3 Y. J. Wang, C. H. Chen, M. L. Yeh, G. H. Hsiue, and B. C. Yu, J. Membr. Sci., 53, 275 (1990).
- 4 A. S. Hoffman, J. Appl. Polym. Sci., Appl. Polym. Symp., 46, 341 (1990).
- 5 C. C. Wang and G. H. Hsiue, J. Appl. Polym. Sci., 50, 1141 (1993).
- 6 M. Kim, K. Saito, and F. Furusaki, J. Membr. Sci., 56, 289 (1992).
- 7 J. Neel, Makromol. Chem., Macromol. Symp., 70/71, 327 (1993).
- 8 T. Hirotsu, in Pervaporation Membrane Separation Processes, R. Y. M. Huang, Ed., Elsevier Science Publishers B. V., Amsterdam, 1991, p. 461.
- 9 B. Gupta and G. G. Scherer, Chimia, 48, 127 (1994).
- 10 I. Ishigaki, T. Sogo, K. Senoo, T. Takayama, S. Machi, J. Okamoto, and T. Okada, Rad. Phys. Chem., 18, 899 (1981).
- 11 M. Wada, Polym. Adv. Technol., 5, 645 (1994).
- 12 I. Ishigaki, T. Sugo, T. Takayama, T. Okada, J. Okamoto, and K. Senoo, J. Appl. Polym. Sci., 27, 1043 (1982).
- 13 N. R. Lazer, U.S. Pat. 4,346,142 (1982).
- 14 K. Kushi, I. Sasaki, and T. Hiroshi, Jpn. Pat. Sho 61 [1986]-86908 (1986).
- 15 K. J. Kim, A. G. Fane, and C. J. D. Fell, J. Membr. Sci., 46, 187 (1989).
- 16 H. Taskier, U.S. Pat. 3,929,509 (1975).
- 17 H.-M. Buchhammer, G. Petzold, and K. Lunkwitz, Eur. Pat. 0603 987 A1 (1993).
- 18 M. Nyström, Proc. 1990, Int. Congr. Membr. Membr. Processes (ICOM'90), 1990, p. 90.
- 19 M. Nyström and P. Järvinen, J. Membr. Sci., 60, 275 (1991).
- 20 E. M. Gabriel and G. E. Gillberg, J. Appl. Polym. Sci., 48, 2081 (1993).
- 21 K. Yamada, J. Appl. Polym. Sci., 44, 993 (1992).
- 22
Z. P. Yao and
B. Ranby,
J. Appl. Polym. Sci.,
40, 1647
(1990).
10.1002/app.1990.070400920 Google Scholar
- 23 J. A. Lanuze and D. L. Myers, J. Appl. Polym. Sci., 40, 595 (1990).
- 24 M. Strobel, C. Dunatov, J. M. Strobel, C. S. Lyons, S. J. Perron, and M. C. Morgan, J. Adhesion Sci. Technol., 3, 321 (1989).
- 25 D. Briggs, D. M. Brewis, and M. B. Konieczko, J. Mater. Sci., 14, 1344 (1979).
- 26 I. Sutherland, D. M. Brewis, R. J. Heath, and E. Sheng, Surface Interface Anal., 17, 507 (1991).
- 27 D. Briggs, D. M. Brewis, and M. B. Konieczo, J. Mater. Sci., 11, 1270 (1976).
- 28 H. A. Willis and V. J. I. Zichy, in Polymer Surfaces, D. T. Clark and W. J. Feast, Eds., Wiley, New York, 1978, Chap. 15.
- 29 J. Peeling and D. T. Clark, J. Polym. Sci., Polym. Chem. Ed., 21, 2047 (1983).
- 30 J. Yamauchi, A. Yamaoka, K. Ikemoto, and T. Matsui, J. Appl. Polym. Sci., 43, 1197 (1991).
- 31 D. E. Bergbreiter, Prog. Polym. Sci., 19, 529 (1994).
- 32 H. Yasuda, Makromol. Chem., Macromol. Symp., 70/71, 29 (1993).
- 33 D. L. Cho and Ö. Eckengren, J. Appl. Polym. Sci., 47, 2125 (1993).
- 34 T. Hirotsu and A. Arita, J. Appl. Polym. Sci., 42, 3255 (1991).
- 35 I. K. Mehta, S. Kumar, G. H. Chauhan, and B. N. Mishra, J. Appl. Polym. Sci., 41, 1171 (1993).
- 36 K. Saito, T. Yamaguchi, K. Uezu, S. Furusaki, T. Sugo, and J. Okamoto, J. Appl. Polym. Sci., 39, 2153 (1990).
- 37 N. Kabay, A. Katakai, T. Sugo, and H. Egawa, J. Appl. Polym. Sci., 49, 599 (1993).
- 38 J. Okamoto, Radiat. Phys. Chem., 29, 469 (1987).
- 39 C. H. Bamford and K. G. Al-Lamee, Macromol. Rap. Commun., 15, 379 (1994).
- 40 Celgard Membrane Information Brouchure, Hoechst Celanese Corporation, USA, 1988.
- 41 C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Tayler, R. M. Raymond, and L. H. Gale, Surface Interface Anal., 3, 211 (1981).
- 42 C. H. Bamford and K. G. Al-Lamee, Polymer, 35, 2844 (1994).
- 43 R. P. Singh, Prog. Polym. Sci., 17, 251 (1992).
- 44 F. Poncin–Epaillard, B. Chevet, and J. C. Brosse, J. Appl. Polym. Sci., 53, 1291 (1994).
- 45 M. B. Huglin, B. L. Johnson, and R. W. Richards, J. Polym. Sci., Polym. Chem. Ed., 14, 1363 (1976).
- 46 A. Chapiro and P. Seidler, Eur. Polym. J., 1, 189 (1965).
- 47 A. Narebska and Z. Bukowski, Makromol. Chem., 186, 1425 (1985).
- 48 J. Friedrich, I. Loeschke, and J. Gähde, Acta Polym., 37, 687 (1986).
- 49 D. L. Cho, P. M. Claesson, C. G. Gölander, and K. Johansson, J. Appl. Polym. Sci., 41, 1373 (1990).
- 50 H. Yasuda and A. K. Sharma, J. Polym. Sci., Polym. Phys. Ed., 19, 1285 (1981).
- 51 E. M. Cross and T. J. McCarthy, Macromolecules, 23, 3916 (1990).
- 52 R. R. Holmes–Farley and R. H. Reamey, Langmuir, 3, 799 (1987).
- 53 N. Watanabe, Y. Ashida, and T. Nakajima, Bull. Chem. Soc., Jpn., 55, 3197 (1982).
- 54 Y. Taru and K. Takaoka, Kobunshi Ronbunshu, 43, 361 (1986).
- 55 A. Garton, Infrared Spectroscopy of Polymer Blends, Composites and Surfaces, Hanser Publishers, Munich, 1992.
- 56 G. Beanson and D. Briggs, in High Resolution XPS of Organic Polymers, Wiley, New York, 1992.