Dressed for success: Realizing the catalytic potential of RNA
Theodore M. Tarasow
NeXstar Pharmaceuticals, Inc., 2860 Wilderness Place, Boulder, CO 80301
Search for more papers by this authorCorresponding Author
Bruce E. Eaton
NeXstar Pharmaceuticals, Inc., 2860 Wilderness Place, Boulder, CO 80301
NeXstar Pharmaceuticals, Inc., 2860 Wilderness Place, Boulder, CO 80301Search for more papers by this authorTheodore M. Tarasow
NeXstar Pharmaceuticals, Inc., 2860 Wilderness Place, Boulder, CO 80301
Search for more papers by this authorCorresponding Author
Bruce E. Eaton
NeXstar Pharmaceuticals, Inc., 2860 Wilderness Place, Boulder, CO 80301
NeXstar Pharmaceuticals, Inc., 2860 Wilderness Place, Boulder, CO 80301Search for more papers by this authorAbstract
In this manuscript the catalytic ability of RNA is examined and compared to other biopolymers. Despite having considerably fewer catalytically enabling properties when compared to proteins, the power of in vitro selection has allowed for RNA and DNA catalysts to be isolated. RNA catalysis has been expanded by incorporating modified bases to enrich the structural and functional diversity of RNA. Successful examples of new RNA chemistry using base modifications include carbon–carbon bond forming reactions and creation of highly specific active sites that are capable of recognizing small organic molecules without the need for nucleic acid templating or intercalation. In fact, the scope of functional modifications available for use in the RNA platform may eventually surpass those that are found in proteins and there are already hints that well chosen modifications allow nucleic acid catalysts to take advantage of mechanisms not available to selected protein catalysts for similar reactions. The chemical versatility of RNA is just emerging and future research directions will likely entail more creative methods for functional modification that will lead to new catalysts. © 1998 John Wiley & Sons, Inc. Biopoly 48: 29–37, 1998
REFERENCES
- 1 Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E. & Cech, T. R. (1982) Cell 31, 147–157.
- 2 Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. (1983) Cell 35, 849–857.
- 3 Gilbert, W. (1986) Nature 319, 618.
- 4 Benner, S. A., Ellington, A. A. & Tauer, A. (1989) Proc. Natl. Acad. Sci. 86, 7054–7058.
- 5 Joyce, G. F. (1991) New Biol. 3, 399–407.
- 6 Ichiro, H. & Ellington, A. (1995) Curr. Biol. 5, 1017–1022.
- 7 Joyce, G. F. (1996) Curr. Biol. 6, 965–967.
- 8 Block, K. (1996) Chem. Biol. 3, 405–407.
- 9 Limbach, P. A., Crain, P. F. & McCloskey, J. A. (1994) Nucleic Acids Res. 22, 2183–2196.
- 10 Tarasow, T. M., Tarasow, S. L. & Eaton, B. E. (1997) Nature 389, 54–57.
- 11 Wiegand, T. W., Janssen, R. C. & Eaton, B. E. (1997) Chem. Biol. 4, 675–683.
- 12 Lorsch, J. R. & Szostak, J. W. (1996) Nature 381, 442–444.
- 13 Zhang, B., Cech, T. R. (1997) Nature 390, 96–100.
- 14 Li, Y. & Sen, D. (1996) Nat. Struct. Biol. 3, 743–747.
- 15 Li, Y. & Sen, D. (1997) Biochemistry 36, 5589–5599.
- 16 Lightstone, F. C. & Bruice, T. C. (1996) J. Am. Chem. Soc. 118, 2595–2605.
- 17 C. R. Cantor & P. R. Schimmel, Eds. (1980) Biophysical Chemistry Part I: The Conformation of Biological Macromolecules, Freeman, San Francisco.
- 18 Perahia, D., Pullman, B., Vasilescu, D., Cornillon, R., Broch, H. (1977) Biochim. Biophys. Acta 478, 244–259.
- 19 Ghomi, M., Victor, J. & Henriet, C. (1994) J. Comput. Chem. 15, 433–445.
- 20
W. Saenger &
C. R. Cantor, Eds.
(1984)
Principles of Nucleic Acid Structure,
Springer-Verlag, New York.
10.1007/978-1-4612-5190-3 Google Scholar
- 21 Jorgensen, W. L. & Pranata, J. (1990) J. Am. Chem. Soc. 112, 2008–2010.
- 22 Zheng, Y.-J. & Bruice, T. C. (1997) J. Am. Chem. Soc. 119, 9103–9113.
- 23 Schultz, P. G. & Lerner, R. A. (1995) Science 269, 1835–1842.
- 24 Wirsching, P., Ashley, J. A., Lo, C.-H. L., Janda, K. D. & Lerner, R. A. (1995) Science 270, 1775–1782.
- 25 Wagner, J., Lerner, R. A. & Barbas, C. F., III (1995) Science 270, 1797–1800.
- 26 Janda, K. D., Lo, C.-H. L., Li, T., Barbaras, C. F., III, Wirsching, P. & Lerner, R. A. (1994) Proc. Natl. Acad. Sci. USA 91, 2532–2536.
- 27 Lo, C.-H. L., Wentworth, P., Jr., Jung, K. W., Yoon, J., Ashley, J. A. & Janda, K. D. (1997) J. Am. Chem. Soc. 119, 10251–10252.
- 28 Gao, C., Lavey, B. J., Lo, C.-H. L., Datta, A., Wentworth, P., Jr. & Janda, K. D. (1998) J. Am. Chem. Soc. 120, 2211–2217.
- 29 Tuerk, C. & Gold, L. (1990) Science 249, 505–510.
- 30 Ellington, A. D. & Szostak, J. W. (1990) Nature 346, 818–822.
- 31 Beaudry, A. A. & Joyce, G. F. (1992) Science 257, 635–641.
- 32 Lorsch, J. R. & Szostak, J. W. (1996) Acc. Chem. Res. 29, 103–110.
- 33 Burgstaller, P. & Famulok, M. (1995) Angew. Chem. Int. Ed. Engl. 34, 1188–1192.
- 34 Breaker, R. R. (1997) Chem. Rev. 97, 371–390.
- 35 Illangasekare, M., Sanchez, G., Nickles, T. & Yarus, M. (1995) Science 267, 643–647.
- 36 Conn, M. M., Prudent, J. R. & Schultz, P. G. (1996) J. Am. Chem. Soc. 118, 7012–7013.
- 37 Prudent, J. R., Uno, T. & Schultz, P. G. (1994) Science 264, 1924–1924.
- 38 Wilson, C. & Szostak, J. W. (1995) Nature 374, 777–782.
- 39 Wecker, M., Smith, D. & Gold, L. (1996) RNA 2, 982–994.
- 40 Breaker, R. R. & Joyce, G. F. (1994) Chem. Biol. 1, 223–229.
- 41 Tsang, J. & Joyce, G. F. (1996) J. Mol. Biol. 262, 31–42.
- 42 Santoro, S. W. & Joyce, G. F. (1997) Proc. Natl. Acad. Sci. 94, 4262–4266.
- 43 Carmi, N., Shultz, L. A. & Breaker, R. R. (1996) Chem. Biol. 3, 1039–1046.
- 44 Roth, A. & Breaker, R. R. (1998) Proc. Natl. Acad. Sci. 95, 6027–6031.
- 45 Joyce, G. F. (1998) Proc. Natl. Acad. Sci. 95, 5845–5847.
- 46
Frauendorf, C. &
Jäsche, A.
(1998)
Angew. Chem. Int. Ed. Engl.
37, 1378–1381.
10.1002/(SICI)1521-3773(19980605)37:10<1378::AID-ANIE1378>3.0.CO;2-# CAS Web of Science® Google Scholar
- 47 Dewey, T. M., Mundt, A., Crouch, G. J., Zyzniewski, M. C. & Eaton, B. E. (1995) J. Am. Chem. Soc. 117, 8474–8475.
- 48 Dewey, T. M., Zyzniewski, M. C. & Eaton, B. E. (1996) Nucleosides Nucleotides 15, 1611–1617.
- 49 Eaton, B. E. (1997) Curr. Opin. Chem. Biol. 1, 10–16.
- 50 Eaton, B. E. & Peiken, W. A. (1994) Ann. Rev. Biochem. 64, 837–863.
- 51 Otto, S., Bertoncin, F. & Engberts, J. B. F. N. (1996) J. Am. Chem. Soc. 118, 7702–7707.
- 52 Morris, K. N., Tarasow, T. M., Julin, C. M., Simons, S. L., Hilvert, D. & Gold, L. (1994) Proc. Natl. Acad. Sci. 91, 13028–13032.
- 53 Cochran, A. G. & Schultz, P. G. (1990) Science 249, 781–783.
- 54 Heine, A., Stura, E. A., Yli-Kauhaluoma, J. T., Gao, C., Deng, Q., Beno, B., Houk, K. N., Janda, K. D. & Wilson, I. A. (1998) Science 279, 1934–1934.
- 55 Hilvert, D., Hill, K. W., Nared, K. D. & Auditor, M. T. M. (1989) J. Am. Chem. Soc. 111, 9261–9262.
- 56 Braisted, A. C. & Schultz, P. G. (1990) J. Am. Chem. Soc. 112, 7430–7431.
- 57 Suckling, C. J., Tedford, M. C. & Bence, L. M. (1992) Bioorg. Med. Chem. Lett. 2, 49–52.
- 58 Gouverneur, V. E., Houk, K. N., de Pascual-Teresa, B., Beno, B., Janda, K. D. & Lerner, R. A. (1993) Science 262, 204–208.
- 59 Yli-Kauhaluoma, J. T., Ashley, J. A., Lo, C.-H., Tucker, L., Wolfe, M. M. & Janda, K. D. (1995) J. Am. Chem. Soc. 117, 7042–7047.