Collagen-based structures containing the peptoid residue N-isobutylglycine (Nleu): Synthesis and biophysical studies of Gly-Pro-Nleu sequences by circular dichroism, ultraviolet absorbance, and optical rotation
Corresponding Author
Yangbo Feng
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343Search for more papers by this authorGiuseppe Melacini
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343
Search for more papers by this authorJoseph P. Taulane
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343
Search for more papers by this authorMurray Goodman
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343
Search for more papers by this authorCorresponding Author
Yangbo Feng
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343Search for more papers by this authorGiuseppe Melacini
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343
Search for more papers by this authorJoseph P. Taulane
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343
Search for more papers by this authorMurray Goodman
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California 92093-0343
Search for more papers by this authorAbstract
A peptoid residue N-isobutylglycine (Nleu) was introduced as a proline surrogate in collagen-like triple helical structures. A series of single chain and template-assembled collagen-based peptide-peptoid structures composed of Gly-Pro-Nleu sequences were prepared by solid-phase segment condensation methods. Both a synthetic route in solution and a solid phase method were employed to couple the KTA (cis,cis-1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid, also known as the Kemp triacid) based template, KTA-(Gly-OH)3, to peptide-peptoid chains. Biophysical studies using CD, uv absorbance, and optical rotation measurements demonstrated that these compounds form triple-helical structures when the chains are longer than critical lengths. Results from melting curve measurements indicated that the Gly-Pro-Nleu sequence is comparable to the Gly-Pro-Pro sequence in stabilizing a triple-helical conformation. The KTA-based template stabilized triple-helical structures as can be seen by the increased melting temperatures as compared to equivalent single chain molecules. In addition, the template reduced the minimum chain length necessary to form a triple helix from six to only three trimer repeats. © 1996 John Wiley & Sons, Inc.
References
- 1 Kaufman, H. E., Steinemann, T. L., Lehman, E., Thompson, H. W., Varnell, E. D., Jacob-LaBarre, J. T. & Gebhardt, B. M. (1994) J. Ocular Phammcol. 10, 17–27.
- 2
Ramachandran, G. N. &
Ramakrishnan, C.
(1976) in
Biochemistry of Collagen,
G. N. Ramachandran &
A. H. Reddi, Eds.,
Plenum Press, New York,
pp 45–84.
10.1007/978-1-4757-4602-0_2 Google Scholar
- 3 Traub, W. & Piez, K. (1971) Adv. Protein Chem. 25, 243–341.
- 4
Bhatnagar, R. S. &
Rapaka, R. S.
(1976) in
Biochemistry of Collagen,
G. N. Ramachandran &
A. H. Reddi, Eds.,
Plenum Press, New York
pp 479–521.
10.1007/978-1-4757-4602-0_10 Google Scholar
- 5 Brahmachari, S. K., Ananthanarayanan, V. S., Rapaka, R. S. & Bhatnagar, R. S. (1978) Biopolymers 17, 2097–2105,
- 6 Bonpra, G. M. & Toniolo, C. (1974) Biopolymers 13, 1055–1066.
- 7 Bonora, G. M. & Toniolo, C. (1974) Biopolymers 13, 1067–1078.
- 8 Brown, F. R., III, Carver, J. P. & Blout, E. R. (1969) J. Mol. Biol. 39, 307–313.
- 9 Brown, F. R., III, Di Corato, A., Lorenzi, G. P. & Blout, E. R. (1972) J. Mol. Biol. 63, 85–99.
- 10 Ananthanarayanan, V. S. & Brahmachari, S. K. (1976) Biopolvmers 15, 707–716.
- 11 Carver, J. P. & Blout, E. R. (1967) in Treatise on Collagen, G. N. Ramachandran, Ed., Academic Press, London, pp, 441–526.
- 12 DeTar, D. F., Albers, R. J. & Gilmore, F. (1972) J. Org. Client. 37, 4377–4380.
- 13 Rapaka, R. S. & Bhatnagar, R. S. (1975) Int. J. Peptide Protein Res. 7, 119–128.
- 14 Sakakibara, S., Kishida, Y., Kikuchi, Y., Sakai, R. & Kakiuchi, K. (1968) Bull. Chem. Soc. Jpn. 41, 1273.
- 15 Sakakibara, S., Inouye, K., Shudo, K., Kishida, Y., Kobayashi, Y. & Prockop, D. J. (1973) Biochim. Biophys, Acta 303, 198–202.
- 16 Scatturin, A., Tamburro, A. M., Del Pra, A. & Bordignon, E. (1975) Int. J. Peptide Protein Res 7, 425–435.
- 17 Segal, D. M. (1969) J. Mol. Biol. 43, 497–517.
- 18 Segal, D. M. & Traub, W. (1969) J. Mol. Biol. 43, 487–496.
- 19 Kobayashi, Y., Sakai, R., Kakiuchi, K. & Isemura, T. (1970) Biopolymers 9, 415–425.
- 20 Inouye, K., Kohayashi, Y., Kyogoku, Y., Kishida, Y., Sakakibara, S. & Prockop, D. J. (1982) Arch. Biochem. Biophys. 219, 198–203.
- 21 Walton, A. G., Blackwell, J. (1973) Biopolymers, Academic Press, New York.
- 22 Lane, J. M., Parkes, L. J. & Prockop, D. J. (1971) Biochim. Biophys. Acta 236, 528–541.
- 23
Prockop, D. J.,
Berg, R. A.,
Kivirikko, K. I. &
Uitto, J.
(1976) in
Biochemistry of Collagen,
G. N. Ramachandran &
A. H. Reddi, Eds.,
Plenum Press, New York,
pp, 163–273.
10.1007/978-1-4757-4602-0_5 Google Scholar
- 24 Takeuchi, T. & Prockop, D. J. (1969) Biochim. Biophys. Acta 175, 142–155.
- 25 Bertoluzza, A., Bonora, S., Fini, G., Morelli, M. A. & Verdini, A. S. (1985) Proc. 1st Eur. Conf. Spectrosc. Biol. Mol., pp, 401–403.
- 26 Bertoluzza, A., Bonora, S., Fini, G., Morelli, M. A. & Verdini, A. S. (1986) Proc. Int. Conf. Laser Scattering Spectr. of Biol. Object, pp, 317–326.
- 27 Inouye, K., Sakakibara, S. & Prockop, D. J. (1976) Biochim. Biophys. Acta 420, 133–141.
- 28 Simon, R. J., Kania, R. S., Zuckermann, R. N., Huebner, V. D., Jewell, D. A., Banville, S., Ng, S., Wang, L., Rosenberg, S., Marlowe, C. K., Spellmeyer, D. C., Tan, R., Frankel, A. D., Santi, D. V., Cohen, F. E. & Bartlett, P. A. (1992) Proc. Natl. Acad Sci. USA 89, 9367–9371.
- 29 Goodman, M., Feng, Y., Melacini, G. & Taulane, J. P. (1996) J. Am. Chem. Soc. 118, 5156–5157.
- 30 Feng, Y., Melacini, G., Taulane, J. P. & Goodman, M. (1996) J. Am. Chem. Soc., in press.
- 31 Melacini, G., Feng, Y. & Goodman, M. (1996) J. Am. Chem. Soc., in press.
- 32 Kruijtzer, J. A. J. & Liskamp, R. M. J. (1995) Tetrahed. Lett. 36, 6969–6972.
- 33 Cantor, C. R. & Schimmel, P. R. (1980) in Biophysical Chemistry, W. H. Freeman and Company, San Francisco, pp, 403.
- 34 von Hippel, P. H. (1967) in Treatise on Collagen, G. N. Ramachandran, Ed., Academic Press, London and New York, pp, 253–338.
- 35 Brodsky-Doyle, B., Leonard, K. R. & Reid, K. B. M. (1976) Biochem. J. 159, 279–286.
- 36
Bhatnagar, R. S. &
Gough, C. A.
(1996) in
Circular Dichroism and the Conformational Analysis of Biomolecules,
G. D. Fasman, Ed.,
Plenum Press, New York and London,
pp, 183–199.
10.1007/978-1-4757-2508-7_6 Google Scholar
- 37 Melacini, G., Feng, Y. & Goodman, M. (1996) J. Am. Chem. Soc., in press.
- 38 Deber, C. M. & Adawadkar, P. D. (1979) Biopolymers 18, 2375–2396.
- 39 Deber, C. M., Young, M. E. M. & Tom-Kun, J. (1980) Biochemistry 19, 6194–6198.
- 40 Skiles, J. W., Miao, C., Sorcek, R., Jacober, S., Mui, P. W., Chow, G., Meldon, S. M., Possanza, G., Skoog, M., Keirns, J., Letts, G. & Rosenthal, A. S. (1992) J. Med. Chem. 35, 4795–4808.
- 41 Miller, S. M., Simon, R. J., Ng, S., Zuckermann, R. N., Kerr, J. M. & Moos, W. H. (1994) Bioorg. Meet. Chem. Lett. 4, 2657–2662.
- 42 Heizmann, G. & Felder, E. R. (1994) Peptide Res. 7, 328–332.
- 43 Eden, J. M., Horwell, D. C. & Pritchard, M. C. (1993) Bioorg. Med. Chem. Lett. 3, 989–992.
- 44 Mazaleyrat, J. P., Rage, I., Mouna, A. M., Savrda, J. & Wakselman, M. (1994) Bioorg. Med. Chem. Lett. 4, 1281–1284.
- 45 Mouna, A. M., Nguyen, C., Rage, I., Xie, J., Nee, G., Mazaleyrat, J. P. & Wakselman, M. (1994) Synth. Comm. 24, 2429–2435.