Angiostatin generation by human tumor cell lines: Involvement of plasminogen activators
Corresponding Author
Johan R. Westphal
Pathology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Pathology Department, University Hospital Nijmegen St. Radboud, P.O. Box 9101, 6500 HB Nijmegen, The NetherlandsSearch for more papers by this authorRianne Van't Hullenaar
Pathology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorAnneke Geurts-Moespot
Chemical Endocrinology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorFred C.J.G. Sweep
Chemical Endocrinology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorMarion M.G. Bussemakers
Urology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorAlexander A.M. Eggermont
Dr. Daniel den Hoed Cancer Clinic, Rotterdam, The Netherlands
Search for more papers by this authorDirk J. Ruiter
Pathology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorRobert M.W. De Waal
Pathology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorCorresponding Author
Johan R. Westphal
Pathology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Pathology Department, University Hospital Nijmegen St. Radboud, P.O. Box 9101, 6500 HB Nijmegen, The NetherlandsSearch for more papers by this authorRianne Van't Hullenaar
Pathology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorAnneke Geurts-Moespot
Chemical Endocrinology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorFred C.J.G. Sweep
Chemical Endocrinology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorMarion M.G. Bussemakers
Urology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorAlexander A.M. Eggermont
Dr. Daniel den Hoed Cancer Clinic, Rotterdam, The Netherlands
Search for more papers by this authorDirk J. Ruiter
Pathology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorRobert M.W. De Waal
Pathology Department, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands
Search for more papers by this authorAbstract
Angiostatin is a tumor-derived angiogenesis inhibitor consisting of an internal fragment of plasminogen. Little is known about the production of angiostatin by human tumors. In this study, we examined the in vitro angiostatin-generating capacities of a panel of human tumor cell lines (total n = 75) and the proteolytic molecule(s) involved. Angiostatin formation was determined by assessing the level of plasminogen digestion in conditioned medium by Western-blot analysis. We found that the capacity to produce angiostatin is a common feature of many cell lines, depending on the tumor type. All 6 bladder-carcinoma and 6 out of 7 prostate-carcinoma cell lines showed intermediate to potent angiostatin-generating activity. In contrast, only 2 out of 7 colon-carcinoma and 2 out of 9 renal-cell carcinoma cell lines were able to generate angiostatin at intermediate levels. Out of 25 melanoma cell lines, only one line failed to generate angiostatin. In the other cell-line groups (cervix, breast and ovary), angiostatin formation varied. Remarkably, angiostatin bands were not of equal size in all plasminogen digests. Since reported data have indicated that plasminogen activators (uPA and tPA) were able to excise the angiostatin fragment from the plasminogen parent molecule via plasmin generation, we determined levels of uPA and tPA and PAI-1 antigen in the conditioned media, and correlated the results with angiostatin-generating capacity. Whereas prostate- and bladder-carcinoma lines capable of generating high levels of angiostatin showed high uPA levels, angiostatin generation in melanoma cell lines was correlated with tPA levels. Generally, angiostatin non-producers did not express uPA or tPA. In 6 out of 75 cell lines, however, we found angiostatin generation combined with low or absent levels of plasminogen activator, suggesting the involvement of alternative proteolytic pathways in the generation of angiostatin. Int. J. Cancer 86:760–767, 2000. © 2000 Wiley-Liss, Inc.
REFERENCES
- Bantel-Schaal, U., Growth properties of a human melanoma cell line are altered by adeno-associated parvovirus type 2. Int. J. Cancer, 60, 269-274 (1995).
- Boehm, T., Folkman, J., Browder, T. and O'Reilly, M.S., Anti-angiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature (Lond.), 390, 404-407 (1998).
- Canevari, S., Orlandi, R., Ripamonti, M., Tagliabue, E., Aguanno, S., Miotti, S., Menard, S. and Colnaghi, M.I., Ricin A chain conjugated with monoclonal antibodies selectively killing human carcinoma cells in vitro. J. nat. Cancer Inst., 75, 831-839 (1985).
- Cao, Y., Chen, A., An, S.S.A., Ji, R.-W., Davidson, D. and Llinás, M., Kringle 5 of plasminogen is a novel inhibitor of endothelial-cell growth. J. biol. Chem., 272, 22924-22828 (1997).
- Cornelius, L.A., Nehring, L.C., Harding, E., Bolanowski, M., Welgus, H.G., Kobayashi, D.K., Pierce, R.A. and Shapiro, S.D., Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol., 161, 6845-6952 (1998).
- Deutsch, D.G. and Mertz, E.T., Plasminogen: purification from human plasma by affinity chromatography. Science, 170, 1095-1096 (1970).
- Dong, Z., Kumar, R., Yang, X. and Fidler, I.J., Macrophage-derived metallo-elastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell, 88, 801-810 (1997).
- Dong, Z., Yoneda, J., Kumar, R. and Fidler, I.J., Angiostatin-mediated suppression of cancer metastases by primary neoplasms engineered to produce granulocyte/macrophage-colony-stimulating factor. J. exp. Med., 188, 755-763 (1998).
- Fidler, I.J. and Ellis, L.M., The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell, 79, 185-188 (1994).
- Folkman, J., Tumor angiogenesis: therapeutic implications. New Engl. J. Med., 285, 1182-1186 (1971).
- Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med., 1, 27-31 (1995).
- Gately, S. and 12 others, Human prostate-carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res., 56, 4887-4890 (1996).
- Gately, S. and 12 others, The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc. nat. Acad. Sci. (Wash.), 94, 10868-10872 (1997).
- Goldberg, M.A., Glass, G.A., Cunningham, J.M. and Bunn, H.F., The regulated expression of erythropoietin by two human hepatoma cell lines. Proc. nat. Acad. Sci. (Wash.), 84, 7972-7976 (1987).
- Grebenschikov, N., Geurts-Moespot, A., De Witte, H., Heuvel, J., Leake, R., Sweep, F. and Benraad, T., A sensitive and robust assay for urokinase- and tissue-type plasminogen activators (uPA and tPA) and their inhibitor type I (PAI-I) in breast-tumor cytosols. Int. J. biol. Markers, 12, 6-14 (1997).
- Herlyn, D., Lidoulos, D., Jensen, P.J., Parmiter, A., Baird, J., Hotta, H., Adachi, K., Ross, A.H., Jambrosic, J., Koprowski, H. and Herlyn, M., In vitro properties of human melanoma cells metastatic in nude mice. Cancer Res., 50, 2296-2302 (1990).
- Hofmann, U.B., Westphal, J.R., Waas, E.T., Zendman, A.J.W., Cornelissen, I.M.A.H., Ruiter, D.J. and Van Muijen, G.N.P., Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Brit. J. Cancer, 81, 774-782 (1999).
- Ji, R.-W., Barrientos, L.G., Llinás, M., Gray, H., Villarreal, X., Deford, M.E., Castellino, F.J., Kramer, R.A. and Trail, P.A., Selective inhibition by kringle 5 of human plasminogen on endothelial-cell migration, an important process in angiogenesis. Biochem. biophys. Res. Commun., 247, 414-419 (1998).
- Kerbel, R.S., A cancer therapy resistant to resistance. Nature (Lond.), 390, 335-336 (1997).
- Lethe, B., van der Bruggen, P., Brasseur, F. and Boon, T., MAGE-1 expression threshold for the lysis of melanoma cell lines by a specific cytotoxic T lymphocyte. Melanoma Res., 7, S83-S88 (1997).
- Lijnen, H.R., Ugwu, F., Bini, A. and Collen, D., Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry, 37, 4699-4702 (1998).
- Lu, H., Dhanabal, M., Volk, R., Waterman, M.J.F., Ramchandran, R., Knebelmann, B., Segal, M. and Sukhatme, V.P., Kringle 5 causes cell-cycle arrest and apoptosis of endothelial cells. Biochem. biophys. Res. Commun., 668-673 1999).
-
Luyten, G.P.,
Naus, N.C.,
Mooy, C.M.,
Hagemeier, A.,
Kan-Mitchell, J.,
Van Drunen, E.,
Vuzevski, V.,
De Jong, P.T. and
Luider, T.M.,
Establishment and characterization of primary and metastatic uveal-melanoma cell lines.
Int. J. Cancer,
66,
380-387
(1996).
10.1002/(SICI)1097-0215(19960503)66:3<380::AID-IJC19>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- Müller, B.M., Romerdahl, C.A., Trent, J.M. and Reisfeld, R.A., Suppression of spontaneous melanoma metastasis in SCID mice with an antibody to the epidermal-growth-factor receptor. Cancer Res., 51, 2193-2198 (1991).
- O'Mahony, C.A., Seidel, A., Albo, D., Chang, H., Tuszynski, G.P. and Berger, D.H., Angiostatin generation by human pancreatic cancer. J. surg. Res., 77, 55-58 (1998).
- O'Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R. and Folkman, J., Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 88, 277-285 (1997).
- O'Reilly, M.S., Holmgren, L., Chen, C. and Folkman, J., Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med., 2, 689-692 (1996).
- O'Reilly, M.S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R.A., Moses, M., Lane, W.S., Cao, Y., Sage, E.H. and Folkman, J., Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79, 315-328 (1994).
- Parangi, S., O'Reilly, M.S., Christofori, G., Holmgren, L., Grosveld, J., Folkman, J. and Hanahan, D., Anti-angiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. nat. Acad. Sci. (Wash.), 93, 2002-2007 (1996).
- Patterson, B.C. and Sang, Q.A., Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type-IV collagenase (MMP-9). J. biol. Chem., 272, 28823-28825 (1997).
- Van Elsas, A., Aarnoudse, C., Van Der Minne, C.E., Van Der Spek, C.W., Brouwenstijn, N., Osanto, S. and Schrier, P.I., Transfection of IL-2 augments CTL response to human melanoma cells in vitro: immunological characterization of a melanoma vaccine. J. Immunother., 20, 343-353 (1997).
- Van Muijen, G.N.P., Cornelissen, L.M.A.H., Jansen, C.F.J., Figdor, C.G., Johnson, J.P., Bröcker, E.-B. and Ruiter, D.J., Antigen expression of metastasizing and non-metastasizing human melanoma cells xenografted into nude mice. Clin. exp. Metastasis, 9, 259-272 (1991a).
- Van Muijen, G.N.P., Jansen, C.F.J., Cornelissen, I.M.A.H., Smeets, D.F.C.M., Beck, J.L.M. and Ruiter, D.J., Establishment and characterization of a human melanoma cell line (MV3) which is highly metastatic in nude mice. Int. J. Cancer, 48, 85-91 (1991b).
- Weidner, N., Intratumor microvessel density as a prognostic factor in cancer. Amer. J. Pathol., 147, 9-19 (1995).
-
Westphal, J.R.,
Van't Hullenaar, R.,
Peek, R.,
Willems, R.W.,
Crickard, K.,
Crickard, U.,
Askaa, J.,
Clemmensen, I.,
Ruiter, D.J. and
De Waal, R.M.W.,
Angiogenic balance in human melanoma: expression of VEGF, bFGF, IL-8, PDGF, and angiostatin in relation to vascular density of xenografts in vivo.
Int. J. Cancer,
86,
768-776
(2000).
10.1002/(SICI)1097-0215(20000615)86:6<768::AID-IJC3>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- Westphal, J.R., Van't Hullenaar, R.G.M., Van Der Laak, J.A.W.M., Cornelissen, L.M.H.A., Schalkwijk, C.J.M., Van Muijen, G.N.P., Wesseling, P., De Wilde, P.C.M., Ruiter, D.J. and De Waal, R.M.W., Vascular density in melanoma xenografts correlates with vascular-permeability-factor expression but not with metastatic potential. Brit. J. Cancer, 76, 561-570 (1997).