Zhejiang Agr & For University
Wiley Online Library
Wiley Online Library
Zhejiang Agr & For University
  • Advanced Search Citation Search
  • Advanced Search Citation Search
  • Individual login
  • Institutional login
  • REGISTER
  • Journal
  • Articles
  • Actions

    Tools

    Follow journal

Journal of Geophysical Research: Space Physics

Journal of Geophysical Research: Space Physics

Navigation Bar

Menu

Home
  • Home
  • About
    • Overview
    • Journal Metrics
    • Contact
    • Editorial Board
    • Permissions
  • Authors
    • Author Guidelines
    • Open Access
    • Submit a Manuscript
  • Browse
    • Accepted Articles
    • Early View
    • Current Issue
    • All Issues
    • Most Accessed

Follow journal

  • Alert
  • RSS Feeds
    • Most recent (RSS)
    • Most cited (RSS)
Highlights
  • Is There a Greenhouse Effect in the Ionosphere, Too? Likely Not

    Mark Zastrow, Freelance Writer
    First Published: 6 October 2017

    Editor’s Highlight—A mechanism of mid-latitude noontime foE long-term variations inferred from European observations

    The study of long-term trends and in long-term variations in thermospheric and ionospheric parameters are currently very popular, and conclusions of these studies differ substantially. The authors of this paper demonstrate that the main source of long-term variations of ionospheric parameters in critical frequencies of E layer is long-term variations in solar activity. 


    From Eos.org: Research Spotlights—

    Controversial observations of long-term changes in the ionosphere appear to be explained by the Sun’s 11-year cycle of activity, not human greenhouse gas emissions.

    In the late 1980s, climate scientists began raising concerns that human emissions of greenhouse gases were warming Earth’s climate. At the time, some space physicists also predicted that such emissions could alter the ionosphere, the high-altitude layers of the atmosphere that consist of charged particles, ionized by the Sun or captured from space.

    In the intervening years the consensus that human carbon emissions are altering Earth’s climate has only solidified. But in the case of the “ionospheric greenhouse effect,” the jury is still out, with decades of mixed results that include some observational evidence.

    But now, a new study by Mikhailov et al. makes a strong argument that most of these variations are not due to human activity but to solar activity. The ionosphere, they found, is just responding to the Sun’s 11-year cycle, in which its magnetic field slowly wraps itself into knots and produces periods of intense sunspots and flares.

    The team used data from three monitoring stations across Europe over the last five solar cycles, from 1964 to 2010. These records relate to the ionosphere’s E region, a layer of particles ionized by the Sun and located around 90 to 150 kilometers high. (The E layer is perhaps best known for disappearing at night, which gives AM radio stations longer ranges as their signals bounce back to Earth off higher ionospheric layers.)

    Previous studies had predicted that increased carbon dioxide levels to date should have lowered the height of the E layer by roughly half a kilometer since 1960. The maximum frequency of radio waves that it can reflect, known as E layer critical frequency (foE)—which indicates the density of electrons in the layer—should have changed by about a tenth of a percent in that time frame. Some records appeared to give the hypothesis some credence, showing ionospheric changes over the past several decades and in the predicted directions.

    But the authors’ results were stark: The variations in foE were almost completely correlated to the changes in the sunspot numbers. They tracked closely not only in year-to-year changes but also within a single 11-year cycle as well as in the long-term trend between cycles. The number of sunspots and variations in foE both rose in the first 25 years of data, peaked in 1985, and fell sharply in later years. The findings strongly support the idea that over the 47 years of data, natural variability in the Sun’s cycles is mainly responsible for changes in the E layer’s properties—not carbon emissions.

    Seeking more physical confirmation, the authors substituted the sunspot numbers with the total flux of extreme ultraviolet (EUV) radiation retrieved at each of the three European stations. Solar EUV radiation is what ionizes and creates the E layer. Their results were virtually identical: The changes in EUV radiation tracked nearly perfectly with the changes in foE.

    These results should help us keep perspective, the team writes: Although we live in the atmosphere of Earth, the entire Earth lies in the atmosphere of the Sun—and the upper reaches of our own atmosphere are inextricably linked to the Sun’s activity. 

Highlighted article

free access

A mechanism of midlatitude noontime foE long-term variations inferred from European observations

A. V. Mikhailov, L. Perrone, A. A. Nusinov, 
  • 21 March 2017
  • 10.1002/2017JA023909
  • Abstract
  • Full text
  • PDF
  • References

Sign up for email alerts

Enter your email to receive alerts when new articles and issues are published.

Please select your location and accept the terms of use.

Tools

  • Submit an article
  • Recommend to a Librarian
  • Browse Sample Issue
  • Subscribe to this Journal

Published on behalf of the American Geophysical Union

null

More from this journal

Resources

  • Call for Papers
  • Personal Choice
  • Special Section Proposal Form
  • Like AGU Space on Facebook
  • Editor in Chief Blog
  • Get RSS Feed
  • Institutional Subscription Rates
  • Subsets
  • Journal Metrics
  • Subscribe to this journal

Journal Highlights

  • Solar Wind Sets the Magnetosphere Ringing
  • Analyzing a 3-D kinetic simulation of a vortex-induced reconnection event
  • Analysis of pulsations observed during a solar flare
  • Is There a Greenhouse Effect in the Ionosphere, Too? Likely Not

See all »

Recent Highlights Across AGU Publications

Eos.org: Earth & Space Science News

View more Earth and space science news from Eos

Download the App

New Android App Available!

Google Play Store Logo

Download the JGR: Space Physics app from the Google Play Store

iOS App for iPad or iPhone

JGR IOS App

Download the JGR: Space Physics app from the Apple store

AGU Career Center

Additional links

About Wiley Online Library

  • Privacy Policy
  • Terms of Use
  • About Cookies
  • Accessibility
  • Wiley Research DE&I Statement and Publishing Policies
  • Developing World Access

Help & Support

  • Contact Us
  • Training and Support
  • DMCA & Reporting Piracy

Opportunities

  • Subscription Agents
  • Advertisers & Corporate Partners

Connect with Wiley

  • The Wiley Network
  • Wiley Press Room

Copyright © 1999-2025 John Wiley & Sons, Inc or related companies. All rights reserved, including rights for text and data mining and training of artificial intelligence technologies or similar technologies.

Wiley Home Page

Log in to Wiley Online Library

Forgot password?
NEW USER > INSTITUTIONAL LOGIN >

Change Password

Too Short Weak Medium Strong Very Strong Too Long

Your password must have 10 characters or more:

  • a lower case character, 
  • an upper case character, 
  • a special character 
  • or a digit
Too Short

Password Changed Successfully

Your password has been changed

Create a new account

Returning user

Forgot your password?

Enter your email address below.

Please check your email for instructions on resetting your password. If you do not receive an email within 10 minutes, your email address may not be registered, and you may need to create a new Wiley Online Library account.

Request Username

Can't sign in? Forgot your username?

Enter your email address below and we will send you your username

Close

If the address matches an existing account you will receive an email with instructions to retrieve your username